Poor cycling stability and mechanistic controversies have hindered the wider application of rechargeable aqueous Zn–MnO2 batteries. Herein, direct evidence was provided of the importance of Mn2+ in this type of battery by using a bespoke cell. Without pre‐addition of Mn2+, the cell exhibited an abnormal discharge–charge profile, meaning it functioned as a primary battery. By adjusting the Mn2+ content in the electrolyte, the cell recovered its charging ability through electrodeposition of MnO2. Additionally, a dynamic pH variation was observed during the discharge–charge process, with a precipitation of Zn4(OH)6(SO4)⋅5H2O buffering the pH of the electrolyte. Contrary to the conventional Zn2+ intercalation mechanism, MnO2 was first converted into MnOOH, which reverted to MnO2 through disproportionation, resulting in the dissolution of Mn2+. The charging process occurred by the electrodeposition of MnO2, thus improving the reversibility through the availability of Mn2+ ions in the solution.