Ureteral stents are one of the most commonly used devices in the treatment of benign and malignant urological diseases. However, they are associated with common complications including encrustation, infection, pain and discomfort caused by ureteral tissue irritation and possibly irregular peristalsis. In addition, stent migration and failure due to external compression by malignancies or restenosis occur, albeit less frequently. As these complications restrict optimal stent function, including maintenance of adequate urine drainage and alleviation of hydronephrosis, novel stent materials and designs are required. In recent years, progress has been made in the development of drug-eluting expandable metal stents and biodegradable stents. New engineering technologies are being investigated to provide stents with increased biocompatibility, decreased susceptibility to encrustation and improved drug-elution characteristics. These novel stent characteristics might help eliminate some of the common complications associated with ureteral stenting and will be an important step towards understanding the behaviour of stents within the urinary tract.