[HTML][HTML] Visual properties of generalized Kloosterman sums

P Burkhardt, AZY Chan, G Currier, SR Garcia… - Journal of Number …, 2016 - Elsevier
For a positive integer m and a subgroup Λ of the unit group (Z/m Z)×, the corresponding
generalized Kloosterman sum is the function K (a, b, m, Λ)=∑ u∈ Λ e (a u+ bu− 1 m) for a,
b∈ Z/m Z. Unlike classical Kloosterman sums, which are real valued, generalized
Kloosterman sums display a surprising array of visual features when their values are plotted
in the complex plane. In a variety of instances, we identify the precise number-theoretic
conditions that give rise to particular phenomena.

Visual properties of generalized Kloosterman sums

SR Garcia, F Luca - 2016 - scholarship.claremont.edu
For a positive integer m and a subgroup A of the unit group (Z/mZ) x, the corresponding
generalized Kloosterman sum is the function K (a, b, m, A)= Σ uEA e (au+ bu-1/m). Unlike
classical Kloosterman sums, which are real valued, generalized Kloosterman sums display
a surprising array of visual features when their values are plotted in the complex plane. In a
variety of instances, we identify the precise number-theoretic conditions that give rise to
particular phenomena.
以上显示的是最相近的搜索结果。 查看全部搜索结果