In this paper, we present WACA, the first system to simultaneously measure all 24 Wi-Fi channels that allow channel bonding at 5 GHz with microsecond scale granularity. With WACA, we perform a first-of-its-kind measurement study in areas including urban hotspots, residential neighborhoods, universities, and even a game in Futbol Club Barcelona’s Camp Nou, a sold-out stadium with 98,000 fans and 12,000 simultaneous Wi-Fi connections. We study channel bonding in this environment, and our experimental findings reveal the underpinning factors controlling throughput gain, including channel bonding policy and spectrum occupancy statistics. We then show the significance of the gathered dataset for finding insights, which would not be possible otherwise, given that simple channel occupancy models severely underestimate the available gains. Likewise, we characterize the risks of channel bonding due to other BSS’s, including their missed transmission opportunities and potential collisions due to imperfect sensing of bonded transmissions. We explore 802.11ax which imposes constraints on bonded channels to avoid fragmentation and defines different modes that can trade implementation complexity for throughput. Lastly, we show that the stadium, while seemingly too highly occupied for channel bonding gains, has transient gaps yielding impressive gains.