Phase transition in the majority-vote model on the archimedean lattices

U Yu - Physical Review E, 2017 - APS
The majority-vote model with noise was studied on the 11 Archimedean lattices by the
Monte Carlo method and finite-size scaling. The critical noises and critical exponents were …

[HTML][HTML] Majority-vote model on triangular, honeycomb and Kagomé lattices

JC Santos, FWS Lima, K Malarz - Physica A: Statistical Mechanics and its …, 2011 - Elsevier
On Archimedean lattices, the Ising model exhibits spontaneous ordering. Three examples of
these lattices of the majority-vote model with noise are considered and studied through …

MAJORITY-VOTE MODEL ON (3, 4, 6, 4) AND (34, 6) ARCHIMEDEAN LATTICES

FWS Lima, K Malarz - International Journal of Modern Physics C, 2006 - World Scientific
On Archimedean lattices, the Ising model exhibits spontaneous ordering. Two examples of
these lattices of the majority-vote model with noise are considered and studied through …

Antiferromagnetic majority voter model on square and honeycomb lattices

F Sastre, M Henkel - Physica A: Statistical Mechanics and its Applications, 2016 - Elsevier
An antiferromagnetic version of the well-known majority voter model on square and
honeycomb lattices is proposed. Monte Carlo simulations give evidence for a continuous …

Critical phenomena in the majority voter model on two-dimensional regular lattices

AL Acuna-Lara, F Sastre, JR Vargas-Arriola - Physical Review E, 2014 - APS
In this work we studied the critical behavior of the critical point as a function of the number of
nearest neighbors on two-dimensional regular lattices. We performed numerical simulations …

Majority-vote model on a random lattice

FWS Lima, UL Fulco, RN Costa Filho - … E—Statistical, Nonlinear, and Soft Matter …, 2005 - APS
The stationary critical properties of the isotropic majority vote model on random lattices with
quenched connectivity disorder are calculated by using Monte Carlo simulations and finite …

Existence of an upper critical dimension in the majority voter model

JS Yang, I Kim, W Kwak - Physical Review E—Statistical, Nonlinear, and Soft …, 2008 - APS
We study the critical properties of the majority voter model on d-dimensional hypercubic
lattices. In two dimensions, the majority voter model belongs to the same universality class …

Critical phenomena of the majority voter model in a three-dimensional cubic lattice

AL Acuña-Lara, F Sastre - Physical Review E—Statistical, Nonlinear, and Soft …, 2012 - APS
In this work we investigate the critical behavior of the three-dimensional simple-cubic
majority voter model. Using numerical simulations and a combination of two different …

[HTML][HTML] Three-state majority-vote model on square lattice

FWS Lima - Physica A: Statistical Mechanics and its Applications, 2012 - Elsevier
Here, a non-equilibrium model with two states (− 1,+ 1) and a noise q on simple square
lattices proposed for MJ Oliveira (1992) following the conjecture of up-down symmetry of …

[HTML][HTML] Majority-vote model with a bimodal distribution of noises

ALM Vilela, FGB Moreira, AJF de Souza - Physica A: Statistical Mechanics …, 2012 - Elsevier
We consider the majority-vote dynamics where the noise parameter, associated with each
spin on a two-dimensional square lattice, is a bimodally distributed random variable defined …