Understanding capacity-driven scale-out neural recommendation inference

M Lui, Y Yetim, Ö Özkan, Z Zhao… - … Analysis of Systems …, 2021 - ieeexplore.ieee.org
Deep learning recommendation models have grown to the terabyte scale. Traditional
serving schemes-that load entire models to a single server-are unable to support this scale …

Deeprecsys: A system for optimizing end-to-end at-scale neural recommendation inference

U Gupta, S Hsia, V Saraph, X Wang… - 2020 ACM/IEEE 47th …, 2020 - ieeexplore.ieee.org
Neural personalized recommendation is the cornerstone of a wide collection of cloud
services and products, constituting significant compute demand of cloud infrastructure. Thus …

Cross-stack workload characterization of deep recommendation systems

S Hsia, U Gupta, M Wilkening, CJ Wu… - 2020 IEEE …, 2020 - ieeexplore.ieee.org
Deep learning based recommendation systems form the backbone of most personalized
cloud services. Though the computer architecture community has recently started to take …

Hercules: Heterogeneity-aware inference serving for at-scale personalized recommendation

L Ke, U Gupta, M Hempstead, CJ Wu… - … Symposium on High …, 2022 - ieeexplore.ieee.org
Personalized recommendation is an important class of deep-learning applications that
powers a large collection of internet services and consumes a considerable amount of …

Tensor casting: Co-designing algorithm-architecture for personalized recommendation training

Y Kwon, Y Lee, M Rhu - 2021 IEEE International Symposium …, 2021 - ieeexplore.ieee.org
Personalized recommendations are one of the most widely deployed machine learning (ML)
workload serviced from cloud datacenters. As such, architectural solutions for high …

Persia: An open, hybrid system scaling deep learning-based recommenders up to 100 trillion parameters

X Lian, B Yuan, X Zhu, Y Wang, Y He, H Wu… - Proceedings of the 28th …, 2022 - dl.acm.org
Recent years have witnessed an exponential growth of model scale in deep learning-based
recommender systems---from Google's 2016 model with 1 billion parameters to the latest …

Recnmp: Accelerating personalized recommendation with near-memory processing

L Ke, U Gupta, BY Cho, D Brooks… - 2020 ACM/IEEE 47th …, 2020 - ieeexplore.ieee.org
Personalized recommendation systems leverage deep learning models and account for the
majority of data center AI cycles. Their performance is dominated by memory-bound sparse …

Understanding data storage and ingestion for large-scale deep recommendation model training: Industrial product

M Zhao, N Agarwal, A Basant, B Gedik, S Pan… - Proceedings of the 49th …, 2022 - dl.acm.org
Datacenter-scale AI training clusters consisting of thousands of domain-specific accelerators
(DSA) are used to train increasingly-complex deep learning models. These clusters rely on a …

Ekko: A {Large-Scale} deep learning recommender system with {Low-Latency} model update

C Sima, Y Fu, MK Sit, L Guo, X Gong, F Lin… - … USENIX Symposium on …, 2022 - usenix.org
Deep Learning Recommender Systems (DLRSs) need to update models at low latency, thus
promptly serving new users and content. Existing DLRSs, however, fail to do so. They …

The architectural implications of facebook's dnn-based personalized recommendation

U Gupta, CJ Wu, X Wang, M Naumov… - … Symposium on High …, 2020 - ieeexplore.ieee.org
The widespread application of deep learning has changed the landscape of computation in
data centers. In particular, personalized recommendation for content ranking is now largely …