Lagrangian flows: the dynamics of globally minimizing orbits

R Mané - Boletim da Sociedade Brasileira de Matemática …, 1997 - Springer
The objective of this note is to present some results, to be proved in a forthcoming paper,
about certain special solutions of the Euler-Lagrange equations on closed manifolds. Our …

Lagrangian flows: The dynamics of globally minimizing orbits-II

G Contreras, J Delgado, R Iturriaga - Boletim da Sociedade Brasileira de …, 1997 - Springer
Define the critical level c (L) of a convex superlinear Lagragian L as the infimum of the k∈
ℝsuch that the Lagragian L+ k has minimizers with fixed endpoints and free time interval. We …

[PDF][PDF] Global minimizers of autonomous Lagrangians

G Contreras, R Iturriaga - 1999 - cimat.mx
Global Minimizers of Autonomous Lagrangians Page 1 Global Minimizers of Autonomous
Lagrangians Gonzalo Contreras Renato Iturriaga cimat mexico, gto. c 2000 Page 2 ii ii Page 3 …

On the minimizing measures of Lagrangian dynamical systems

R Mané - Nonlinearity, 1992 - iopscience.iop.org
The author considers dynamical systems generated by time-dependent periodic
Lagrangians on a closed manifold M. An invariant probability mu of such a system has an …

The Palais-Smale condition on contact type energy levels for convex Lagrangian systems

G Contreras - Calculus of Variations and Partial Differential …, 2006 - Springer
We prove that for a uniformly convex Lagrangian system L on a compact manifold M, almost
all energy levels contain a periodic orbit. We also prove that below Mañé's critical value of …

Convex Hamiltonians without conjugate points

G Contreras, R Iturriaga - Ergodic Theory and Dynamical Systems, 1999 - cambridge.org
We construct the Green bundles for an energy level without conjugate points of a convex
Hamiltonian. In this case we give a formula for the metric entropy of the Liouville measure …

A smooth pseudo-gradient for the Lagrangian action functional

A Abbondandolo, M Schwarzy - Advanced Nonlinear Studies, 2009 - degruyter.com
We study the action functional associated to a smooth Lagrangian function on the tangent
bundle of a manifold, having quadratic growth in the velocities. We show that, although the …

Lectures on the free period Lagrangian action functional

A Abbondandolo - Journal of Fixed Point Theory and Applications, 2013 - Springer
In this expository article we study the question of the existence of periodic orbits of
prescribed energy for classical Hamiltonian systems on compact configuration spaces. We …

Optimal control and geodesic flows

AM Bloch, PE Crouch - Systems & control letters, 1996 - Elsevier
In this paper we analyze and generalize, from the point of view of the maximum principle, a
class of nonlinear optimal control problems originally introduced in Brockett (1994). The …

Generic properties and problems of minimizing measures of Lagrangian systems

R Mané - Nonlinearity, 1996 - iopscience.iop.org
It is proved here that minimizing measures of a Lagrangian flow are invariant and the
Lagrangian is cohomologous to a constant on the support of their ergodic components …