Data-driven graph construction and graph learning: A review

L Qiao, L Zhang, S Chen, D Shen - Neurocomputing, 2018 - Elsevier
A graph is one of important mathematical tools to describe ubiquitous relations. In the
classical graph theory and some applications, graphs are generally provided in advance, or …

A survey on graph representation learning methods

S Khoshraftar, A An - ACM Transactions on Intelligent Systems and …, 2024 - dl.acm.org
Graph representation learning has been a very active research area in recent years. The
goal of graph representation learning is to generate graph representation vectors that …

Graph learning: A survey

F Xia, K Sun, S Yu, A Aziz, L Wan… - IEEE Transactions on …, 2021 - ieeexplore.ieee.org
Graphs are widely used as a popular representation of the network structure of connected
data. Graph data can be found in a broad spectrum of application domains such as social …

A survey of graph neural networks in various learning paradigms: methods, applications, and challenges

L Waikhom, R Patgiri - Artificial Intelligence Review, 2023 - Springer
In the last decade, deep learning has reinvigorated the machine learning field. It has solved
many problems in computer vision, speech recognition, natural language processing, and …

A survey on graph structure learning: Progress and opportunities

Y Zhu, W Xu, J Zhang, Y Du, J Zhang, Q Liu… - arXiv preprint arXiv …, 2021 - arxiv.org
Graphs are widely used to describe real-world objects and their interactions. Graph Neural
Networks (GNNs) as a de facto model for analyzing graphstructured data, are highly …

Tudataset: A collection of benchmark datasets for learning with graphs

C Morris, NM Kriege, F Bause, K Kersting… - arXiv preprint arXiv …, 2020 - arxiv.org
Recently, there has been an increasing interest in (supervised) learning with graph data,
especially using graph neural networks. However, the development of meaningful …

Graph pooling for graph neural networks: Progress, challenges, and opportunities

C Liu, Y Zhan, J Wu, C Li, B Du, W Hu, T Liu… - arXiv preprint arXiv …, 2022 - arxiv.org
Graph neural networks have emerged as a leading architecture for many graph-level tasks,
such as graph classification and graph generation. As an essential component of the …

M-evolve: structural-mapping-based data augmentation for graph classification

J Zhou, J Shen, S Yu, G Chen… - IEEE Transactions on …, 2020 - ieeexplore.ieee.org
Graph classification, which aims to identify the category labels of graphs, plays a significant
role in drug classification, toxicity detection, protein analysis etc. However, the limitation of …

A comprehensive survey on deep graph representation learning methods

IA Chikwendu, X Zhang, IO Agyemang… - Journal of Artificial …, 2023 - jair.org
There has been a lot of activity in graph representation learning in recent years. Graph
representation learning aims to produce graph representation vectors to represent the …

Gpt-gnn: Generative pre-training of graph neural networks

Z Hu, Y Dong, K Wang, KW Chang, Y Sun - Proceedings of the 26th ACM …, 2020 - dl.acm.org
Graph neural networks (GNNs) have been demonstrated to be powerful in modeling graph-
structured data. However, training GNNs requires abundant task-specific labeled data …