Deep learning-based network intrusion detection using multiple image transformers

T Kim, W Pak - Applied Sciences, 2023 - mdpi.com
The development of computer vision-based deep learning models for accurate two-
dimensional (2D) image classification has enabled us to surpass existing machine learning …

SecureNet: A PySpark-Based Approach to Enhanced Network Intrusion Detection Using Machine Learning and Feature Engineering

BA Reddy, GS Reddy, K Lokesh… - 2023 4th International …, 2024 - ieeexplore.ieee.org
Cyber-attacks are increasing day to day in this world of AI and Internet. A ML model to detect
the network attack based on the network parameters is of great use. The proposed model …

Network Traffic Intrusion Detection

F Žada, M Antonić - 2024 International Conference on Software …, 2024 - ieeexplore.ieee.org
The paper explores the application of machine learning algorithms for network traffic
intrusion detection with the aim of enhancing the security of information systems. More …

Anomaly-Based Intrusion Detection in Network Traffic using Machine Learning: A Comparative Study of Decision Trees and Random Forests

AK Sah, K Venkatesh - 2024 2nd International Conference on …, 2024 - ieeexplore.ieee.org
With advancements in information and virtualization technologies, the volume and growth of
security threats from cyber attacks targeting networked systems are increasing. Protecting …

DCNN: A Novel Binary and Multi-Class Network Intrusion Detection Model via Deep Convolutional Neural Network

A Shebl, S Elsedimy, A Ismail, A Salama, M Herajy - 2024 - researchsquare.com
Network security has become imperative in the context of our interconnected networks and
everyday communications. Recently, many deep learning models have been proposed to …

Användning av artificiella neurala nätverk (ANNs) för att upptäcka cyberattacker: En systematisk litteraturgenomgång av hur ANN kan användas för att identifiera …

N Wongkam, AAS Shameel - 2023 - diva-portal.org
Denna studie undersöker användningen av maskininlärning (ML), särskilt artificiella neurala
nätverk (ANN), inom nätverksdetektering för att upptäcka och förebygga cyberattacker …

Enhancing Intrusion Detection with Dimensionality Reduction Methods Using Machine Learning

M Rathika, P Sivakumar, V Bhuvaneshwari… - Nanotechnology …, 2024 - nano-ntp.com
This project investigates the efficacy of machine learning algorithms, including Naive Bayes
(NB), NLP, and K-Nearest Neighbors (KNN), in the context of Intrusion Detection Systems …

[PDF][PDF] A NOVELTY APPROACH OF NETWORK INTRUSION DETECTION USING CNN

V MOHANADAS, V YAZHINI, A VASUKI, S VENNILA… - espjeta.org