[HTML][HTML] A systematic literature review of methods and datasets for anomaly-based network intrusion detection

Z Yang, X Liu, T Li, D Wu, J Wang, Y Zhao, H Han - Computers & Security, 2022 - Elsevier
As network techniques rapidly evolve, attacks are becoming increasingly sophisticated and
threatening. Network intrusion detection has been widely accepted as an effective method to …

Network intrusion detection for IoT security based on learning techniques

N Chaabouni, M Mosbah, A Zemmari… - … Surveys & Tutorials, 2019 - ieeexplore.ieee.org
Pervasive growth of Internet of Things (IoT) is visible across the globe. The 2016 Dyn
cyberattack exposed the critical fault-lines among smart networks. Security of IoT has …

A survey on machine learning techniques for cyber security in the last decade

K Shaukat, S Luo, V Varadharajan, IA Hameed… - IEEE …, 2020 - ieeexplore.ieee.org
Pervasive growth and usage of the Internet and mobile applications have expanded
cyberspace. The cyberspace has become more vulnerable to automated and prolonged …

HCRNNIDS: Hybrid convolutional recurrent neural network-based network intrusion detection system

MA Khan - Processes, 2021 - mdpi.com
Nowadays, network attacks are the most crucial problem of modern society. All networks,
from small to large, are vulnerable to network threats. An intrusion detection (ID) system is …

A detailed investigation and analysis of using machine learning techniques for intrusion detection

P Mishra, V Varadharajan… - … surveys & tutorials, 2018 - ieeexplore.ieee.org
Intrusion detection is one of the important security problems in todays cyber world. A
significant number of techniques have been developed which are based on machine …

A literature review on one-class classification and its potential applications in big data

N Seliya, A Abdollah Zadeh, TM Khoshgoftaar - Journal of Big Data, 2021 - Springer
In severely imbalanced datasets, using traditional binary or multi-class classification typically
leads to bias towards the class (es) with the much larger number of instances. Under such …

A survey of DDoS attacking techniques and defence mechanisms in the IoT network

R Vishwakarma, AK Jain - Telecommunication systems, 2020 - Springer
Internet-of-things has emerged out as an important invention towards employing the
tremendous power of wireless media in the real world. We can control our surroundings by …

Anomal-E: A self-supervised network intrusion detection system based on graph neural networks

E Caville, WW Lo, S Layeghy, M Portmann - Knowledge-Based Systems, 2022 - Elsevier
This paper investigates graph neural networks (GNNs) applied for self-supervised intrusion
and anomaly detection in computer networks. GNNs are a deep learning approach for graph …

A survey on data-driven network intrusion detection

D Chou, M Jiang - ACM Computing Surveys (CSUR), 2021 - dl.acm.org
Data-driven network intrusion detection (NID) has a tendency towards minority attack
classes compared to normal traffic. Many datasets are collected in simulated environments …

Unsupervised machine learning for networking: Techniques, applications and research challenges

M Usama, J Qadir, A Raza, H Arif, KLA Yau… - IEEE …, 2019 - ieeexplore.ieee.org
While machine learning and artificial intelligence have long been applied in networking
research, the bulk of such works has focused on supervised learning. Recently, there has …