[HTML][HTML] Deep learning for urban land use category classification: A review and experimental assessment

Z Li, B Chen, S Wu, M Su, JM Chen, B Xu - Remote Sensing of …, 2024 - Elsevier
Mapping the distribution, pattern, and composition of urban land use categories plays a
valuable role in understanding urban environmental dynamics and facilitating sustainable …

Segment everything everywhere all at once

X Zou, J Yang, H Zhang, F Li, L Li… - Advances in …, 2024 - proceedings.neurips.cc
In this work, we present SEEM, a promotable and interactive model for segmenting
everything everywhere all at once in an image. In SEEM, we propose a novel and versatile …

Depth anything: Unleashing the power of large-scale unlabeled data

L Yang, B Kang, Z Huang, X Xu… - Proceedings of the …, 2024 - openaccess.thecvf.com
Abstract This work presents Depth Anything a highly practical solution for robust monocular
depth estimation. Without pursuing novel technical modules we aim to build a simple yet …

Convolutions die hard: Open-vocabulary segmentation with single frozen convolutional clip

Q Yu, J He, X Deng, X Shen… - Advances in Neural …, 2024 - proceedings.neurips.cc
Open-vocabulary segmentation is a challenging task requiring segmenting and recognizing
objects from an open set of categories in diverse environments. One way to address this …

Vision-language models for vision tasks: A survey

J Zhang, J Huang, S Jin, S Lu - IEEE Transactions on Pattern …, 2024 - ieeexplore.ieee.org
Most visual recognition studies rely heavily on crowd-labelled data in deep neural networks
(DNNs) training, and they usually train a DNN for each single visual recognition task …

Medical image segmentation review: The success of u-net

R Azad, EK Aghdam, A Rauland, Y Jia… - … on Pattern Analysis …, 2024 - ieeexplore.ieee.org
Automatic medical image segmentation is a crucial topic in the medical domain and
successively a critical counterpart in the computer-aided diagnosis paradigm. U-Net is the …

Repvit: Revisiting mobile cnn from vit perspective

A Wang, H Chen, Z Lin, J Han… - Proceedings of the IEEE …, 2024 - openaccess.thecvf.com
Abstract Recently lightweight Vision Transformers (ViTs) demonstrate superior performance
and lower latency compared with lightweight Convolutional Neural Networks (CNNs) on …

Conv2former: A simple transformer-style convnet for visual recognition

Q Hou, CZ Lu, MM Cheng… - IEEE Transactions on …, 2024 - ieeexplore.ieee.org
Vision Transformers have been the most popular network architecture in visual recognition
recently due to the strong ability of encode global information. However, its high …

Transformer-based visual segmentation: A survey

X Li, H Ding, H Yuan, W Zhang, J Pang… - … on Pattern Analysis …, 2024 - ieeexplore.ieee.org
Visual segmentation seeks to partition images, video frames, or point clouds into multiple
segments or groups. This technique has numerous real-world applications, such as …

Diffuse Attend and Segment: Unsupervised Zero-Shot Segmentation using Stable Diffusion

J Tian, L Aggarwal, A Colaco, Z Kira… - Proceedings of the …, 2024 - openaccess.thecvf.com
Producing quality segmentation masks for images is a fundamental problem in computer
vision. Recent research has explored large-scale supervised training to enable zero-shot …