Skip to main content

Object as Hotspots: An Anchor-Free 3D Object Detection Approach via Firing of Hotspots

  • Conference paper
  • First Online:
Computer Vision – ECCV 2020 (ECCV 2020)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 12366))

Included in the following conference series:

Abstract

Accurate 3D object detection in LiDAR based point clouds suffers from the challenges of data sparsity and irregularities. Existing methods strive to organize the points regularly, e.g. voxelize, pass them through a designed 2D/3D neural network, and then define object-level anchors that predict offsets of 3D bounding boxes using collective evidences from all the points on the objects of interest. Contrary to the state-of-the-art anchor-based methods, based on the very nature of data sparsity, we observe that even points on an individual object part are informative about semantic information of the object. We thus argue in this paper for an approach opposite to existing methods using object-level anchors. Inspired by compositional models, which represent an object as parts and their spatial relations, we propose to represent an object as composition of its interior non-empty voxels, termed hotspots, and the spatial relations of hotspots. This gives rise to the representation of Object as Hotspots (OHS). Based on OHS, we further propose an anchor-free detection head with a novel ground truth assignment strategy that deals with inter-object point-sparsity imbalance to prevent the network from biasing towards objects with more points. Experimental results show that our proposed method works remarkably well on objects with a small number of points. Notably, our approach ranked \(1^{st}\) on KITTI 3D Detection Benchmark for cyclist and pedestrian detection, and achieved state-of-the-art performance on NuScenes 3D Detection Benchmark.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
EUR 29.95
Price includes VAT (India)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 85.59
Price includes VAT (India)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR 99.99
Price excludes VAT (India)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Caesar, H., et al.: Nuscenes: a multimodal dataset for autonomous driving. arXiv preprint arXiv:1903.11027 (2019)

  2. Chen, X., Ma, H., Wan, J., Li, B., Xia, T.: Multi-view 3d object detection network for autonomous driving. In: CVPR (2017)

    Google Scholar 

  3. Chen, Y., Liu, S., Shen, X., Jia, J.: Fast point R-CNN. In: ICCV, October 2019

    Google Scholar 

  4. Dai, J., Hong, Y., Hu, W., Zhu, S.C., Nian Wu, Y.: Unsupervised learning of dictionaries of hierarchical compositional models. In: CVPR (2014)

    Google Scholar 

  5. Duan, K., Bai, S., Xie, L., Qi, H., Huang, Q., Tian, Q.: Centernet: keypoint triplets for object detection. In: ICCV, pp. 6569–6578 (2019)

    Google Scholar 

  6. Fidler, S., Boben, M., Leonardis, A.: Learning a hierarchical compositional shape vocabulary for multi-class object representation. arXiv preprint arXiv:1408.5516 (2014)

  7. Geiger, A., Lenz, P., Urtasun, R.: Are we ready for autonomous driving? the kitti vision benchmark suite. In: CVPR (2012)

    Google Scholar 

  8. Geirhos, R., Rubisch, P., Michaelis, C., Bethge, M., Wichmann, F.A., Brendel, W.: Imagenet-trained CNNs are biased towards texture; increasing shape bias improves accuracy and robustness. In: International Conference on Learning Representations (2019). https://openreview.net/forum?id=Bygh9j09KX

  9. Girshick, R.: Fast R-CNN. In: ICCV (2015)

    Google Scholar 

  10. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: CVPR, pp. 770–778 (2016)

    Google Scholar 

  11. Hu, P., Ziglar, J., Held, D., Ramanan, D.: What you see is what you get: exploiting visibility for 3d object detection. arXiv preprint arXiv:1912.04986 (2019)

  12. Jin, Y., Geman, S.: Context and hierarchy in a probabilistic image model. In: CVPR (2006)

    Google Scholar 

  13. Kendall, A., et al.: End-to-end learning of geometry and context for deep stereo regression. In: ICCV (2017)

    Google Scholar 

  14. Kong, T., Sun, F., Liu, H., Jiang, Y., Shi, J.: Foveabox: beyond anchor-based object detector. arXiv preprint arXiv:1904.03797 (2019)

  15. Kortylewski, A., et al.: Greedy structure learning of hierarchical compositional models. arXiv preprint arXiv:1701.06171 (2017)

  16. Ku, J., Mozifian, M., Lee, J., Harakeh, A., Waslander, S.L.: Joint 3d proposal generation and object detection from view aggregation. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) (2018)

    Google Scholar 

  17. Lang, A.H., Vora, S., Caesar, H., Zhou, L., Yang, J., Beijbom, O.: Pointpillars: fast encoders for object detection from point clouds. In: CVPR (2019)

    Google Scholar 

  18. Law, H., Deng, J.: Cornernet: Detecting objects as paired keypoints. In: ECCV, pp. 734–750 (2018)

    Google Scholar 

  19. Liang, M., Yang, B., Chen, Y., Hu, R., Urtasun, R.: Multi-task multi-sensor fusion for 3d object detection. In: CVPR (2019)

    Google Scholar 

  20. Liang, M., Yang, B., Wang, S., Urtasun, R.: Deep continuous fusion for multi-sensor 3d object detection. In: ECCV (2018)

    Google Scholar 

  21. Lin, T.Y., Dollár, P., Girshick, R., He, K., Hariharan, B., Belongie, S.: Feature pyramid networks for object detection. In: CVPR (2017)

    Google Scholar 

  22. Lin, T.Y., Goyal, P., Girshick, R., He, K., Dollár, P.: Focal loss for dense object detection. In: ICCV (2017)

    Google Scholar 

  23. Liu, W., Anguelov, D., Erhan, D., Szegedy, C., Reed, S., Fu, C.-Y., Berg, A.C.: SSD: single shot multibox detector. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9905, pp. 21–37. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46448-0_2

    Chapter  Google Scholar 

  24. Loshchilov, I., Hutter, F.: Fixing weight decay regularization in adam. arXiv preprint arXiv:1711.05101 (2017)

  25. Maturana, D., Scherer, S.: Voxnet: a 3d convolutional neural network for real-time object recognition. In: IROS (2015)

    Google Scholar 

  26. Meyer, G.P., Laddha, A., Kee, E., Vallespi-Gonzalez, C., Wellington, C.K.: Lasernet: an efficient probabilistic 3d object detector for autonomous driving. In: CVPR (2019)

    Google Scholar 

  27. Qi, C.R., Litany, O., He, K., Guibas, L.J.: Deep hough voting for 3d object detection in point clouds. In: ICCV (2019)

    Google Scholar 

  28. Qi, C.R., Liu, W., Wu, C., Su, H., Guibas, L.J.: Frustum pointnets for 3d object detection from RGB-d data. In: CVPR (2018)

    Google Scholar 

  29. Ren, S., He, K., Girshick, R., Sun, J.: Faster R-CNN: towards real-time object detection with region proposal networks. In: Neural Information Processing Systems (2015)

    Google Scholar 

  30. Shi, S., Wang, X., Li, H.: Pointrcnn: 3d object proposal generation and detection from point cloud. In: CVPR (2019)

    Google Scholar 

  31. Simon, M., Milz, S., Amende, K., Gross, H.M.: Complex-yolo: an euler-region-proposal for real-time 3d object detection on point clouds. In: ECCV (2018)

    Google Scholar 

  32. Smith, L.N., Topin, N.: Super-convergence: very fast training of neural networks using large learning rates. In: Artificial Intelligence and Machine Learning for Multi-Domain Operations Applications, vol. 11006, p. 1100612. International Society for Optics and Photonics (2019)

    Google Scholar 

  33. Tian, Z., Shen, C., Chen, H., He, T.: FCOS: fully convolutional one-stage object detection. arXiv preprint arXiv:1904.01355 (2019)

  34. Wang, B., An, J., Cao, J.: Voxel-FPN: multi-scale voxel feature aggregation in 3d object detection from point clouds. arXiv preprint arXiv:1907.05286 (2019)

  35. Wang, W., Yu, R., Huang, Q., Neumann, U.: SGPN: Similarity group proposal network for 3d point cloud instance segmentation. In: CVPR (2018)

    Google Scholar 

  36. Wang, Z., Jia, K.: Frustum convnet: sliding frustums to aggregate local point-wise features for amodal 3d object detection. In: IROS (2019)

    Google Scholar 

  37. Yan, Y., Mao, Y., Li, B.: Second: sparsely embedded convolutional detection. Sensors 18(10), 3337 (2018)

    Article  Google Scholar 

  38. Yang, B., Luo, W., Urtasun, R.: Pixor: real-time 3d object detection from point clouds. In: CVPR (2018)

    Google Scholar 

  39. Yang, B., et al: Learning object bounding boxes for 3d instance segmentation on point clouds. arXiv preprint arXiv:1906.01140 (2019)

  40. Yang, Z., Sun, Y., Liu, S., Shen, X., Jia, J.: STD: sparse-to-dense 3d object detector for point cloud. arXiv preprint arXiv:1907.10471 (2019)

  41. Ye, Y., Chen, H., Zhang, C., Hao, X., Zhang, Z.: Sarpnet: shape attention regional proposal network for lidar-based 3d object detection. Neurocomputing 379, 53–63 (2020)

    Article  Google Scholar 

  42. Yin, T., Zhou, X., Krähenbühl, P.: Center-based 3d object detection and tracking. arXiv:2006.11275 (2020)

  43. Zhang, Z., Xie, C., Wang, J., Xie, L., Yuille, A.L.: Deepvoting: a robust and explainable deep network for semantic part detection under partial occlusion. In: CVPR (2018)

    Google Scholar 

  44. Zhou, D., et al.: IOU loss for 2d/3d object detection. arXiv preprint arXiv:1908.03851 (2019)

  45. Zhou, X., Wang, D., Krähenbühl, P.: Objects as points. arXiv preprint arXiv:1904.07850 (2019)

  46. Zhou, X., Zhuo, J., Krahenbuhl, P.: Bottom-up object detection by grouping extreme and center points. In: CVPR, pp. 850–859 (2019)

    Google Scholar 

  47. Zhou, Y., Tuzel, O.: Voxelnet: end-to-end learning for point cloud based 3d object detection. In: CVPR (2018)

    Google Scholar 

  48. Zhu, B., Jiang, Z., Zhou, X., Li, Z., Yu, G.: Class-balanced grouping and sampling for point cloud 3d object detection. arXiv preprint arXiv:1908.09492 (2019)

  49. Zhu, C., He, Y., Savvides, M.: Feature selective anchor-free module for single-shot object detection. arXiv preprint arXiv:1903.00621 (2019)

  50. Zhu, L.L., Lin, C., Huang, H., Chen, Y., Yuille, A.: Unsupervised structure learning: hierarchical recursive composition, suspicious coincidence and competitive exclusion. In: ECCV (2008)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lin Sun .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Chen, Q., Sun, L., Wang, Z., Jia, K., Yuille, A. (2020). Object as Hotspots: An Anchor-Free 3D Object Detection Approach via Firing of Hotspots. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, JM. (eds) Computer Vision – ECCV 2020. ECCV 2020. Lecture Notes in Computer Science(), vol 12366. Springer, Cham. https://doi.org/10.1007/978-3-030-58589-1_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-58589-1_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-58588-4

  • Online ISBN: 978-3-030-58589-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics