Please wait a minute...
Acta Metall Sin  2018, Vol. 54 Issue (11): 1553-1566    DOI: 10.11900/0412.1961.2018.00372
Materials and Processes Current Issue | Archive | Adv Search |
Deformation Behavior and Toughening of High-Entropy Alloys
Zhaoping LU(), Zhifeng LEI, Hailong HUANG, Shaofei LIU, Fan ZHANG, Dabo DUAN, Peipei CAO, Yuan WU, Xiongjun LIU, Hui WANG
State Key Laboratory for Advanced Metals and Materials, University of Science and Technology Beijing, Beijing 100083, China
Cite this article: 

Zhaoping LU, Zhifeng LEI, Hailong HUANG, Shaofei LIU, Fan ZHANG, Dabo DUAN, Peipei CAO, Yuan WU, Xiongjun LIU, Hui WANG. Deformation Behavior and Toughening of High-Entropy Alloys. Acta Metall Sin, 2018, 54(11): 1553-1566.

Download:  HTML  PDF(3574KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

A new alloy design concept, high-entropy alloys (HEAs), has attracted increasing attentions and becomes a new research highlight recently. Different from traditional alloy design strategy which usually blends with one or two elements as the principal constituent and other minor elements for the further optimization of properties, HEAs are multicomponent alloys containing several principle elements (usually ≥5) in equiatomic or near equiatomic ratio. Due to their unique atomic structure, HEAs possess a lot of distinguished properties. Since the discovery of HEAs, a variety of HEA systems have been developed and shown unique physical, chemical and thermodynamic properties, especially the promising mechanical properties such as high strength and hardness, abrasion resistance, corrosion resistance and softening resistance. Here in this short review manuscript, starting from the research challenges for understanding the deformation mechanism of HEAs, this work briefly summarized the mechanical properties and deformation behavior of HEAs, reviewed the proposed strengthening-toughening strategies and their corresponding deformation mechanism in HEAs. A brief perspective on the research directions of mechanical behavior of HEAs was also proposed.

Key words:  high-entropy alloy      toughening      deformation behavior and mechanism     
Received:  16 August 2018     
ZTFLH:  TG457.19  
Fund: Supported by National Natural Science Foundation of China (Nos.51671018, 51871016, 11790293, 51531001 and 51671021), Program of Introducing Talents of Discipline to University of China (No.B07003) and Fundamental Research Funds for the Central Universities (Nos.FRF-TP-18-004C1and FRF-TP-15-004C1)

URL: 

https://www.ams.org.cn/EN/10.11900/0412.1961.2018.00372     OR     https://www.ams.org.cn/EN/Y2018/V54/I11/1553

Fig.1  True tensile stress-strain curves of high-entropy alloys (HEAs) with different Ta contents (a), ultimate tensile strength and ductility of the ductilized HEAs, in comparison with other advanced alloys (b) (IF—interstitial free, TWIP—twinning induced plasticity, TRIP—transformation induced plasticity)
Fig.2  Room-temperature tensile properties of FeCoNiCr HEA with Ti and Al addition
Fig.3  Characterization of the morphology and structure of precipitate in FeCoNiCr HEA with Ti and Al addition
[1] Yeh J W, Chen S K, Lin S J, et al.Nanostructured high-entropy alloys with multiple principal elements: Novel alloy design concepts and outcomes[J]. Adv. Eng. Mater., 2004, 6: 299
[2] Cantor B, Chang I T H, Knight P, et al. Microstructural development in equiatomic multicomponent alloys [J]. Mater. Sci. Eng., 2004, A375-377: 213
[3] Miao J, Slone C E, Smith T M, et al.The evolution of the deformation substructure in a Ni-Co-Cr equiatomic solid solution alloy[J]. Acta Mater., 2017, 132: 35
[4] Senkov O N, Wilks G B, Miracle D B, et al.Refractory high-entropy alloys[J]. Intermetallics, 2010, 18: 1758
[5] Daoud H M, Manzoni A M, V?lkl R, et al.Oxidation behavior of Al8Co17Cr17Cu8Fe17Ni33, Al23Co15Cr23Cu8Fe15Ni15, and Al17Co17Cr17Cu17-Fe17Ni17 compositionally complex alloys (high-entropy alloys) at elevated temperatures in air[J]. Adv. Eng. Mater., 2015, 17: 1134
[6] Senkov O N, Miller J D, Miracle D B, et al.Accelerated exploration of multi-principal element alloys with solid solution phases[J]. Nat. Commun., 2015, 6: 6529
[7] Gludovatz B, Hohenwarter A, Catoor D, et al.A fracture-resistant high-entropy alloy for cryogenic applications[J]. Science, 2014, 345: 1153
[8] Zhou Y J, Zhang Y, Wang Y L, et al.Solid solution alloys of AlCoCrFeNiTix with excellent room-temperature mechanical properties[J]. Appl. Phys. Lett., 2007, 90: 181904
[9] Wang W R, Wang W L, Wang S C, et al.Effects of Al addition on the microstructure and mechanical property of AlxCoCrFeNi high-entropy alloys[J]. Intermetallics, 2012, 26: 44
[10] Li Z M, Pradeep K G, Deng Y, et al.Metastable high-entropy dual-phase alloys overcome the strength-ductility trade-off[J]. Nature, 2016, 534: 227
[11] Huang H L, Wu Y, He J Y, et al.Phase-transformation ductilization of brittle high-entropy alloys via metastability engineering[J]. Adv. Mater., 2017, 29: 1701678
[12] He J Y, Wang H, Huang H L, et al.A precipitation-hardened high-entropy alloy with outstanding tensile properties[J]. Acta Mater., 2016, 102: 187
[13] Gao X Z, Lu Y P, Zhang B, et al.Microstructural origins of high strength and high ductility in an AlCoCrFeNi2.1 eutectic high-entropy alloy[J]. Acta Mater., 2017, 141: 59
[14] Lucas M S, Wilks G B, Mauger L, et al.Absence of long-range chemical ordering in equimolar FeCoCrNi[J]. Appl. Phys. Lett., 2012, 100: 251907
[15] Yeh J W.Alloy design strategies and future trends in high-entropy alloys[J]. JOM, 2013, 65: 1759
[16] Yeh J W, Chang S Y, Hong Y D, et al.Anomalous decrease in X-ray diffraction intensities of Cu-Ni-Al-Co-Cr-Fe-Si alloy systems with multi-principal elements[J]. Mater. Chem. Phys., 2007, 103: 41
[17] Courtney T H.Mechanical Behavior of Materials [M]. 2nd Ed., Long Grove, IL: Waveland Press, 2005: 186
[18] Fleischer R L.Rapid solution hardening, dislocation mobility, and the flow stress of crystals[J]. J. Appl. Phys., 1962, 33: 3504
[19] Labusch R.A statistical theory of solid solution hardening[J]. Phys. Status Solidi, 1970, 41B: 659
[20] Senkov O N, Scott J M, Senkova S V, et al.Microstructure and room temperature properties of a high-entropy TaNbHfZrTi alloy[J]. J. Alloys Compd., 2011, 509: 6043
[21] Toda-Caraballo I, Rivera-Díaz-del-Castillo P E J. Modelling solid solution hardening in high entropy alloys[J]. Acta Mater., 2015, 85: 14
[22] Zhang Y, Zhou Y J, Lin J P, et al.Solid-solution phase formation rules for multi-component alloys[J]. Adv. Eng. Mater., 2008, 10: 534
[23] Zhang F X, Zhao S J, Jin K, et al.Local structure and short-range order in a NiCoCr solid solution alloy[J]. Phys. Rev. Lett., 2017, 118: 205501
[24] Santodonato L J, Zhang Y, Feygenson M, et al.Deviation from high-entropy configurations in the atomic distributions of a multi-principal-element alloy[J]. Nat. Commun., 2015, 6: 5964
[25] Singh P, Smirnov A V, Johnson D D.Atomic short-range order and incipient long-range order in high-entropy alloys[J]. Phys. Rev., 2015, 91B: 224204
[26] Li C, Xue Y F, Hua M T, et al.Microstructure and mechanical properties of AlxSi0.2CrFeCoNiCu1-x high-entropy alloys[J]. Mater. Des., 2016, 90: 601
[27] Wang F J, Zhang Y, Chen G L.Atomic packing efficiency and phase transition in a high entropy alloy[J]. J. Alloys Compd., 2009, 478: 321
[28] Tong Y, Velisa G, Zhao S, et al.Evolution of local lattice distortion under irradiation in medium-and high-entropy alloys[J]. Materialia, 2018, doi: 10.1016/j.mtla.2018.06.008
[29] He Q F, Yang Y.On lattice distortion in high entropy alloys[J]. Front. Mater., 2018, 5: 42
[30] Song H Q, Tian F Y, Hu Q M, et al.Local lattice distortion in high-entropy alloys[J]. Phys. Rev. Mater., 2017, 1: 023404
[31] Klepaczko J R.Physical-state variables—The key to constitutive modeling in dynamic plasticity[J]. Nucl. Eng. Des., 1991, 127: 103
[32] Neuh?user H, Schwink C.Materials Science and Technology, Solid Solution Strengthening[M]. Vol.6, Weinheim: VCH, 1993: 234
[33] Liu S Y, Wei Y J.The Gaussian distribution of lattice size and atomic level heterogeneity in high entropy alloys[J]. Ext. Mech. Lett., 2017, 11: 84
[34] Otto F, Dlouhy A, Somsen C, et al.The influences of temperature and microstructure on the tensile properties of a CoCrFeMnNi high-entropy alloy[J]. Acta Mater., 2013, 61: 5743
[35] Laplanche G, Kostka A, Horst O M, et al.Microstructure evolution and critical stress for twinning in the CrMnFeCoNi high-entropy alloy[J]. Acta Mater., 2016, 118: 152
[36] He J Y, Zhu C, Zhou D Q, et al.Steady state flow of the FeCoNiCrMn high entropy alloy at elevated temperatures[J]. Intermetallics, 2014, 55: 9
[37] He J Y, Liu W H, Wang H, et al.Effects of Al addition on structural evolution and tensile properties of the FeCoNiCrMn high-entropy alloy system[J]. Acta Mater., 2014, 62: 105
[38] Senkov O N, Semiatin S L.Microstructure and properties of a refractory high-entropy alloy after cold working[J]. J. Alloys Compd., 2015, 649: 1110
[39] Senkov O N, Scott J M, Senkova S V, et al.Microstructure and elevated temperature properties of a refractory TaNbHfZrTi alloy[J]. J. Mater. Sci., 2012, 47: 4062
[40] Senkov O N, Wilks G B, Scott J M, et al.Mechanical properties of Nb25Mo25Ta25W25 and V20Nb20Mo20Ta20W20 refractory high entropy alloys[J]. Intermetallics, 2011, 19: 698
[41] Takeuchi A, Amiya K, Wada T, et al.High-entropy alloys with a hexagonal close-packed structure designed by equi-atomic alloy strategy and binary phase diagrams[J]. JOM, 2014, 66: 1984
[42] Gao M C, Alman D E.Searching for next single-phase high-entropy alloy compositions[J]. Entropy, 2013, 15: 4504
[43] Feuerbacher M, Heidelmann M, Thomas C.Hexagonal high-entropy alloys[J]. Mater. Res. Lett., 2015, 3: 1
[44] Soler R, Evirgen A, Yao M, et al.Microstructural and mechanical characterization of an equiatomic YGdTbDyHo high entropy alloy with hexagonal close-packed structure[J]. Acta Mater., 2018, 156: 86
[45] Rogal ?, Czerwinski F, Jochym P T, et al.Microstructure and mechanical properties of the novel Hf25Sc25Ti25Zr25 equiatomic alloy with hexagonal solid solutions[J]. Mater. Des., 2016, 92: 8
[46] Wang W R, Wang W L, Yeh J W.Phases, microstructure and mechanical properties of AlxCoCrFeNi high-entropy alloys at elevated temperatures[J]. J. Alloys Compd., 2014, 589: 143
[47] Takeuchi A, Amiya K, Wada T, et al.Dual HCP structures formed in senary ScYLaTiZrHf multi-principal-element alloy[J]. Intermetallics, 2016, 69: 103
[48] Liu W H, Lu Z P, He J Y, et al.Ductile CoCrFeNiMox high entropy alloys strengthened by hard intermetallic phases[J]. Acta Mater., 2016, 116: 332
[49] Lin C M, Tsai H L.Effect of annealing treatment on microstructure and properties of high-entropy FeCoNiCrCu0.5 alloy[J]. Mater. Chem. Phys., 2011, 128: 50
[50] Liu W H, Wu Y, He J Y, et al.Grain growth and the Hall-Petch relationship in a high-entropy FeCrNiCoMn alloy[J]. Scr. Mater., 2013, 68: 526
[51] Lu Y P, Dong Y, Guo S, et al.A promising new class of high-temperature alloys: eutectic high-entropy alloys[J]. Sci. Rep., 2014, 4: 6200
[52] Lu Y P, Gao X Z, Jiang L, et al.Directly cast bulk eutectic and near-eutectic high entropy alloys with balanced strength and ductility in a wide temperature range[J]. Acta Mater., 2017, 124: 143
[53] Jiang H, Han K M, Gao X X, et al.A new strategy to design eutectic high-entropy alloys using simple mixture method[J]. Mater. Des., 2018, 142: 101
[54] Wu D, Zhang J Y, Huang J C, et al.Grain-boundary strengthening in nanocrystalline chromium and the Hall-Petch coefficient of body-centered cubic metals[J]. Scr. Mater., 2013, 68: 118
[55] Sun S J, Tian Y Z, Lin H R, et al.Transition of twinning behavior in CoCrFeMnNi high entropy alloy with grain refinement[J]. Mater. Sci. Eng., 2018, A712: 603
[56] Juan C C, Tsai M H, Tsai C W, et al.Simultaneously increasing the strength and ductility of a refractory high-entropy alloy via grain refining[J]. Mater. Lett., 2016, 184: 200
[57] Seol J B, Bae J W, Li Z M, et al.Boron doped ultrastrong and ductile high-entropy alloys[J]. Acta Mater., 2018, 151: 366
[58] Fan X M, Xu L J.Review on strengthening mechanisms and models of metal materials[J]. Found. Technol., 2017, 38: 2796(范晓嫚, 徐流杰. 金属材料强化机理与模型综述[J]. 铸造技术, 2017, 38: 2796)
[59] Stepanov N D, Shaysultanov D G, Salishchev G A, et al.Effect of V content on microstructure and mechanical properties of the CoCrFeMnNiVx high entropy alloys[J]. J. Alloys Compd., 2015, 628: 170
[60] Liu S F, Wu Y, Wang H T, et al.Stacking fault energy of face-centered-cubic high entropy alloys[J]. Intermetallics, 2018, 93: 269
[61] Wu Z, Bei H, Pharr G M, et al.Temperature dependence of the mechanical properties of equiatomic solid solution alloys with face-centered cubic crystal structures[J]. Acta Mater., 2014, 81: 428
[62] Wang Z W, Baker I, Cai Z H, et al.The effect of interstitial carbon on the mechanical properties and dislocation substructure evolution in Fe40.4Ni11.3Mn34.8Al7.5Cr6 high entropy alloys[J]. Acta Mater., 2016, 120: 228
[63] Stepanov N D, Shaysultanov D G, Chernichenko R S, et al.Effect of thermomechanical processing on microstructure and mechanical properties of the carbon-containing CoCrFeNiMn high entropy alloy[J]. J. Alloys Compd., 2017, 693: 394
[64] Xie Y C, Cheng H, Tang Q H, et al.Effects of N addition on microstructure and mechanical properties of CoCrFeNiMn high entropy alloy produced by mechanical alloying and vacuum hot pressing sintering[J]. Intermetallics, 2018, 93: 228
[65] Chen Y W, Li Y K, Cheng X W, et al.Interstitial strengthening of refractory ZrTiHfNb0.5Ta0.5Ox (x= 0.05, 0.1, 0.2) high-entropy alloys[J]. Mater. Lett., 2018, 228: 145
[66] Jiang L, Lu Y P, Wu W, et al.Microstructure and mechanical properties of a CoFeNi2V0.5Nb0.75 eutectic high entropy alloy in as-cast and heat-treated conditions[J]. J. Mater. Sci. Technol., 2016, 32: 245
[67] He F, Wang Z J, Cheng P, et al.Designing eutectic high entropy alloys of CoCrFeNiNbx[J]. J. Alloys Compd., 2016, 656: 284
[68] Huang S, Li W, Lu S, et al.Temperature dependent stacking fault energy of FeCrCoNiMn high entropy alloy[J]. Scr. Mater., 2015, 108: 44
[69] Deng Y, Tasan C C, Pradeep K G, et al.Design of a twinning-induced plasticity high entropy alloy[J]. Acta Mater., 2015, 94: 124
[70] Gludovatz B, Hohenwarter A, Thurston K V S, et al. Exceptional damage-tolerance of a medium-entropy alloy CrCoNi at cryogenic temperatures[J]. Nat. Commun., 2016, 7: 10602
[71] Laplanche G, Kostka A, Reinhart C, et al.Reasons for the superior mechanical properties of medium-entropy CrCoNi compared to high-entropy CrMnFeCoNi[J]. Acta Mater., 2017, 128: 292
[72] Okamoto N L, Fujimoto S, Kambara Y, et al.Size effect, critical resolved shear stress, stacking fault energy, and solid solution strengthening in the CrMnFeCoNi high-entropy alloy[J]. Sci. Rep., 2016, 6: 35863
[73] Herrera C, Ponge D, Raabe D.Design of a novel Mn-based 1 GPa duplex stainless TRIP steel with 60% ductility by a reduction of austenite stability[J]. Acta Mater., 2011, 59: 4653
[74] Sun F, Zhang J Y, Marteleur M, et al.Investigation of early stage deformation mechanisms in a metastable β titanium alloy showing combined twinning-induced plasticity and transformation-induced plasticity effects[J]. Acta Mater., 2013, 61: 6406
[75] Wu Y, Xiao Y H, Chen G L, et al.Bulk metallic glass composites with transformation-mediated work-hardening and ductility[J]. Adv. Mater., 2010, 22: 2770
[76] Bouaziz O, Allain S, Scott C P, et al.High manganese austenitic twinning induced plasticity steels: A review of the microstructure properties relationships[J]. Curr. Opin. Solid State Mater. Sci., 2011, 15: 141
[77] Li Z M, K?rmann F, Grabowski B, et al.Ab initio assisted design of quinary dual-phase high-entropy alloys with transformation-induced plasticity[J]. Acta Mater., 2017, 136: 262
[78] Rogal ?, Kalita D, Tarasek A, et al.Effect of SiC nano-particles on microstructure and mechanical properties of the CoCrFeMnNi high entropy alloy[J]. J. Alloys Compd., 2017, 708: 344
[79] Rogal ?, Kalita D, Litynska-Dobrzynska L.CoCrFeMnNi high entropy alloy matrix nanocomposite with addition of Al2O3[J]. Intermetallics, 2017, 86: 104
[80] Zinkle S J, Ghoniem N M. Operating temperature windows for fusion reactor structural materials [J]. Fusion Eng. Des., 2000, 51-52: 55
[81] Hadraba H, Chlup Z, Dlouhy A, et al.Oxide dispersion strengthened CoCrFeNiMn high-entropy alloy[J]. Mater. Sci. Eng., 2017, A689: 252
[82] Chen S T, Tang W Y, Kuo Y F, et al.Microstructure and properties of age-hardenable AlxCrFe1.5MnNi0.5 alloys[J]. Mater. Sci. Eng., 2010, A527: 5818
[83] Tsai M H, Yuan H, Cheng G M, et al.Morphology, structure and composition of precipitates in Al0.3CoCrCu0.5FeNi high-entropy alloy[J]. Intermetallics, 2013, 32: 329
[84] Zhao Y L, Yang T, Zhu J H, et al.Development of high-strength Co-free high-entropy alloys hardened by nanosized precipitates[J]. Scr. Mater., 2018, 148: 51
[1] ZHANG Haifeng, YAN Haile, FANG Feng, JIA Nan. Molecular Dynamic Simulations of Deformation Mechanisms for FeMnCoCrNi High-Entropy Alloy Bicrystal Micropillars[J]. 金属学报, 2023, 59(8): 1051-1064.
[2] LIU Junpeng, CHEN Hao, ZHANG Chi, YANG Zhigang, ZHANG Yong, DAI Lanhong. Progress of Cryogenic Deformation and Strengthening-Toughening Mechanisms of High-Entropy Alloys[J]. 金属学报, 2023, 59(6): 727-743.
[3] FENG Li, WANG Guiping, MA Kai, YANG Weijie, AN Guosheng, LI Wensheng. Microstructure and Properties of AlCo x CrFeNiCu High-Entropy Alloy Coating Synthesized by Cold Spraying Assisted Induction Remelting[J]. 金属学报, 2023, 59(5): 703-712.
[4] MIAO Junwei, WANG Mingliang, ZHANG Aijun, LU Yiping, WANG Tongmin, LI Tingju. Tribological Properties and Wear Mechanism of AlCr1.3TiNi2 Eutectic High-Entropy Alloy at Elevated Temperature[J]. 金属学报, 2023, 59(2): 267-276.
[5] HU Wenbin, ZHANG Xiaowen, SONG Longfei, LIAO Bokai, WAN Shan, KANG Lei, GUO Xingpeng. Corrosion Behavior of AlCoCrFeNi2.1 Eutectic High-Entropy Alloy in Sulfuric Acid Solution[J]. 金属学报, 2023, 59(12): 1644-1654.
[6] HAN Linzhi, MU Juan, ZHOU Yongkang, ZHU Zhengwang, ZHANG Haifeng. Effect of Heat Treatment Temperature on Microstructure and Mechanical Properties of Ti0.5Zr1.5NbTa0.5Sn0.2 High-Entropy Alloy[J]. 金属学报, 2022, 58(9): 1159-1168.
[7] GU Ruicheng, ZHANG Jian, ZHANG Mingyang, LIU Yanyan, WANG Shaogang, JIAO Da, LIU Zengqian, ZHANG Zhefeng. Fabrication of Mg-Based Composites Reinforced by SiC Whisker Scaffolds with Three-Dimensional Interpenetrating-Phase Architecture and Their Mechanical Properties[J]. 金属学报, 2022, 58(7): 857-867.
[8] ZHAO Xiaofeng, LI Ling, ZHANG Han, LU Jie. Research Progress in High-Entropy Alloy Bond Coat Material for Thermal Barrier Coatings[J]. 金属学报, 2022, 58(4): 503-512.
[9] XU Liujie, ZONG Le, LUO Chunyang, JIAO Zhaolin, WEI Shizhong. Toughening Pathways and Regulatory Mechanisms of Refractory High-Entropy Alloys[J]. 金属学报, 2022, 58(3): 257-271.
[10] ZHAO Yonghao, MAO Qingzhong. Toughening of Nanostructured Metals[J]. 金属学报, 2022, 58(11): 1385-1398.
[11] LU Lei, ZHAO Huaizhi. Progress in Strengthening and Toughening Mechanisms of Heterogeneous Nanostructured Metals[J]. 金属学报, 2022, 58(11): 1360-1370.
[12] FAN Genlian, GUO Zhiqi, TAN Zhanqiu, LI Zhiqiang. Architecture Design Strategies and Strengthening-Toughening Mechanisms of Metal Matrix Composites[J]. 金属学报, 2022, 58(11): 1416-1426.
[13] AN Zibing, MAO Shengcheng, ZHANG Ze, HAN Xiaodong. Strengthening-Toughening Mechanism and Mechanical Properties of Span-Scale Heterostructure High-Entropy Alloy[J]. 金属学报, 2022, 58(11): 1441-1458.
[14] ZHANG Jinyu, QU Qimeng, WANG Yaqiang, WU Kai, LIU Gang, SUN Jun. Research Progress on Irradiation Effects and Mechanical Properties of Metal/High-Entropy Alloy Nanostructured Multilayers[J]. 金属学报, 2022, 58(11): 1371-1384.
[15] CUI Hongzhi, JIANG Di. Research Progress of High-Entropy Alloy Coatings[J]. 金属学报, 2022, 58(1): 17-27.
No Suggested Reading articles found!