The mechanisms for silicon (Si) defect and nanocrystal related white and near-infrared electroluminescences (ELs) of Si-rich SiO2 films synthesized by Si-ion implantation and plasma-enhanced chemical-vapor deposition (PECVD) are investigated. The strong photoluminescence (PL) of Si-ion-implanted SiO2(SiO2:Si+) at 415–455 nm contributed by weak-oxygen bond and neutral oxygen vacancy defects is observed after 1100 °C annealing for 180 min. The white-light EL of a reverse-biased SiO2:Si+ metal-oxide-semiconductor (MOS) diode with a turn-on voltage of 3.3 V originates from the minority-carrier tunneling and recombination in the defect states of SiO2:Si+, which exhibits maximum EL power of 120 nW at bias of 15 V with a power–current slope of 2.2μWA. The precipitation of nanocrystallite silicon (nc-Si) in SiO2:Si+ is less pronounced due to relatively small excess Si density. In contrast, the 4-nm nc-Si contributed to PL and EL at about 760 nm is precipitated in the PECVD-grown Si-rich SiOx film after annealing at 1100 °C for 30 min. The indium-tin-oxide/Si-rich SiOxp-SiAl metal oxide semiconductor (MOS) diode is highly resistive with turn-on voltage and power-current (PI) slope of 86 V and 0.7mWA, respectively. The decomposed EL peaks at 625 and 768 nm are contributed by the bias-dependent cold-carrier tunneling between the excited states in adjacent nc-Si quantum dots.

1.
Q.
Ye
,
R.
Tsu
, and
E. H.
Nicollian
,
Phys. Rev. B
44
,
1806
(
1991
).
2.
A.
Pèrez-Rodrìguez
,
O.
González-Varona
,
B.
Garrido
,
P.
Pellegrino
,
J. R.
Morante
,
C.
Bonafos
,
M.
Carrada
, and
A.
Claverie
,
J. Appl. Phys.
94
,
254
(
2003
).
3.
D.
Pacifici
,
E. C.
Moreira
,
G.
Franzo
,
V.
Martorino
, and
F.
Priolo
,
Phys. Rev. B
65
,
144109
(
2002
).
4.
L. T.
Canham
,
Appl. Phys. Lett.
57
,
1046
(
1990
).
5.
X.
Zhao
,
O.
Schoenfeld
,
J.
Kusano
,
Y.
Aoyagi
, and
T.
Sugano
,
Jpn. J. Appl. Phys., Part 2
33
,
L899
(
1994
).
6.
P.
Mutti
,
G.
Ghislotti
,
S.
Bertoni
,
L.
Bonoldi
,
G. F.
Cerofolini
,
L.
Meda
,
E.
Grilli
, and
M.
Guzzi
,
Appl. Phys. Lett.
66
,
851
(
1995
).
7.
T.
Shimizu-Iwayama
,
K.
Fujita
,
S.
Nakao
,
K.
Saitoh
,
T.
Fujita
, and
N.
Itoh
,
J. Appl. Phys.
75
,
7779
(
1994
).
8.
H.
Takagi
,
H.
Owada
,
Y.
Yamazaki
,
A.
Ishizaki
, and
T.
Nakagiri
,
Appl. Phys. Lett.
56
,
2379
(
1990
).
9.
S.
Tong
,
X. N.
Liu
,
T.
Gao
, and
X. M.
Bao
,
Appl. Phys. Lett.
71
,
698
(
1997
).
10.
L. S.
Liao
,
X. M.
Bao
,
X. Q.
Zheng
,
N. S.
Li
, and
N. B.
Min
,
Appl. Phys. Lett.
68
,
850
(
1996
).
11.
H. Z.
Song
,
X. M.
Bao
,
N. S.
Li
, and
J. Y.
Zhang
,
J. Appl. Phys.
82
,
4028
(
1997
).
12.
G. G.
Qin
,
A. P.
Li
,
B. R.
Zhang
, and
B. C.
Li
,
J. Appl. Phys.
78
,
2006
(
1995
).
13.
H. Z.
Song
and
X. M.
Bao
,
Phys. Rev. B
55
,
6988
(
1997
).
14.
W.
Hayes
,
M. J.
Kane
,
O.
Salminen
,
R. L.
Wood
, and
S. P.
Doherty
,
J. Phys. C
17
,
2943
(
1984
).
15.
H.
Nishikawa
,
E.
Watanabe
,
D.
Ito
,
M.
Takiyama
,
A.
Leki
, and
Y.
Ohki
,
J. Appl. Phys.
78
,
842
(
1995
).
16.
R.
Tohmon
,
Y.
Shimogaichi
,
H.
Mizuno
,
Y.
Ohki
,
K.
Nagasawa
, and
Y.
Hama
,
Phys. Rev. Lett.
62
,
1388
(
1989
).
17.
J.
Valenta
,
N.
Lalic
, and
J.
Linnros
,
Opt. Mater. (Amsterdam, Neth.)
17
,
45
(
2001
).
18.
J.
Valenta
,
R.
Juhasz
, and
J.
Linnros
,
Appl. Phys. Lett.
80
,
1070
(
2002
).
19.
F.
Iacona
,
F.
Frazo
,
E. C.
Moreira
,
D.
Pacifici
,
A.
Irrera
, and
F.
Priolo
,
Mater. Sci. Eng., C
19
,
377
(
2002
).
20.
G.
Franzo
 et al,
Appl. Phys. A: Mater. Sci. Process.
74
,
1
(
2002
).
21.
L.
Skuja
,
J. Non-Cryst. Solids
149
,
77
(
1992
).
22.
J. C.
Cheang-Wong
,
A.
Oliver
,
J.
Roiz
,
J. M.
Hernandez
,
L.
Rodrigues-Fernandez
,
J. G.
Morales
, and
A.
Crespo-Sosa
,
Nucl. Instrum. Methods Phys. Res. B
175–177
,
490
(
2001
).
23.
H.
Nishikawa
,
R. E.
Stahlbush
, and
J. H.
Stathis
,
Phys. Rev. B
60
,
15910
(
1999
).
24.
H. S.
Bae
,
T. G.
Kim
,
C. N.
Whang
,
S.
Im
,
J. S.
Yun
, and
J. H.
Song
,
J. Appl. Phys.
91
,
4078
(
2002
).
25.
E. H.
Poindexter
and
P. J.
Caplan
,
J. Vac. Sci. Technol. A
6
,
1352
(
1988
).
26.
B. L.
Zhang
and
K.
Raghavachari
,
Phys. Rev. B
55
,
R15993
(
1997
).
27.
H.
Nishikawa
,
R.
Nakamura
,
R.
Tohmon
,
Y.
Ohki
,
Y.
Sakurai
,
K.
Nagasawa
, and
Y.
Hama
,
Phys. Rev. B
41
,
7828
(
1990
).
28.
S. T.
Chou
,
J. H.
Tsai
, and
B. C.
Sheu
,
J. Appl. Phys.
83
,
5394
(
1998
).
29.
H.
Nishikawa
,
E.
Watanabe
,
D.
Ito
,
Y.
Sakurai
,
K.
Nagasawa
, and
Y.
Ohki
,
J. Appl. Phys.
80
,
3513
(
1996
).
30.
M. Ya.
Valakh
,
V. A.
Yukhimchuk
,
V. Ya.
Bratus
,
A. A.
Konchits
,
P. L.F.
Hemment
, and
T.
Komoda
,
J. Appl. Phys.
85
,
168
(
1999
).
31.
K.
Vanheusden
and
A.
Stesmans
,
J. Appl. Phys.
74
,
275
(
1993
).
32.
Y.
Sakurai
and
K.
Nagasawa
,
J. Appl. Phys.
86
,
1377
(
1999
).
33.
H.
Nishikawa
,
T.
Shiroyama
,
R.
Nakamura
,
Y.
Ohki
,
K.
Nagasawa
, and
Y.
Hama
,
Phys. Rev. B
45
,
586
(
1992
).
34.
C.
Delerue
,
G.
Allan
, and
M.
Lannoo
,
Phys. Rev. B
48
,
11024
(
1993
).
35.
J.
Yuan
and
D.
Haneman
,
J. Appl. Phys.
86
,
2358
(
1999
).
36.
M.
Kimura
and
H.
Koyama
,
J. Appl. Phys.
85
,
7671
(
1999
).
37.
H. J.
Wen
and
R.
Ludeke
,
J. Vac. Sci. Technol. B
15
,
1080
(
1997
).
38.
A.
Irrera
 et al,
Appl. Phys. Lett.
81
,
1866
(
2002
).
39.
J.
De La Torre
 et al,
Physica E (Amsterdam)
16
,
326
(
2003
).
40.
D. J.
DiMaria
 et al,
J. Appl. Phys.
56
,
401
(
1984
).
41.
D. K.
Ferry
and
S. M.
Goodnick
, in
Transport in Nanostructures
(
Cambridge University Press
, New York,
1997
), pp.
23
90
.
You do not currently have access to this content.