Skip to main content
Log in

Solving the kinematics and dynamics of a modular spatial hyper-redundant manipulator by means of screw theory

  • Published:
Multibody System Dynamics Aims and scope Submit manuscript

Abstract

In this contribution, a systematic methodology for solving the kinematic and dynamic analyses of a modular spatial hyper-redundant manipulator built with an optional number of serially connected three-legged in-parallel manipulators are presented.

First, the kinematics and dynamics of the base module are carried out using the theory of screws and the principle of virtual work. Next, the expressions obtained for the base module are extended without significant effort to the spatial hyper-redundant manipulator under study. Finally, the proposed methodology of analysis is applied to a 18 degrees of freedom hyper-redundant manipulator.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
€32.70 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Indonesia)

Instant access to the full article PDF.

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Yanqiong, F., Qinglei, D., Xifang, Z.: Modular structure of a self-reconfigurable robot. Front. Mech. Eng. China 2, 116–119 (2007)

    Article  Google Scholar 

  2. Ropponen, T., Nakamura, Y.: Singularity-free parameterization and performance analysis of actuation redundancy. In: IEEE International Conference on Robotics and Automation, pp. 806–811 (1990)

  3. Zergeroglu, E., Dawson, D.D., Walker, I.W., Setlur, P.: Nonlinear tracking control of kinematically redundant robot manipulators. IEEE/ASME Trans. Mechatron. 9(1), 129–132 (2004)

    Article  Google Scholar 

  4. Kim, S.W., Park, K.B., Lee, J.J.: Redundancy resolution of robot manipulators using optimal kinematic control. In: IEEE International Conference on Robotics and Automation, pp. 683–688 (1994)

  5. Hsia, T.C., Guo, Z.Y.: New inverse kinematic algorithms for redundant robots. J. Robot. Syst. 8, 117–132 (1991)

    Article  MATH  Google Scholar 

  6. Suh, I.H., Shin, K.G.: Coordination of dual robot arms using kinematic redundancy. IEEE Trans. Robot. Autom. 5(2), 236–242 (1989)

    Article  Google Scholar 

  7. Nguyen, L.A., Walker, I.D., Defigueiredo, R.J.P.: Dynamic control of flexible, kinematically redundant robot manipulators. IEEE Trans. Robot. Autom. 8(6), 759–767 (1992)

    Article  Google Scholar 

  8. Chen, T.H., Cheng, F.T., Sun, Y.Y., Hung, M.H.: Torque optimization schemes for kinematically redundant manipulators. J. Robot. Syst. 11, 257–269 (1994)

    Article  MATH  Google Scholar 

  9. Dasgupta, B., Mruthyunjaya, T.S.: Force redundancy in parallel manipulators: theoretical and practical issues. Mech. Mach. Theory 33, 727–742 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  10. Gallardo-Alvarado, J., Alici, G., Aguilar-Nájera, C., Pérez-González, L.: A new family of non-overconstrained redundantly-actuated parallel manipulators. Multibody Syst. Dyn. (2007, submitted)

  11. Mohamed, M.G., Gosselin, C.M.: Design and analysis of kinematically redundant parallel manipulators with configurable platforms. IEEE Trans. Robot. 21, 277–287 (2005)

    Article  Google Scholar 

  12. Wang, J., Gosselin, C.M.: Kinematic analysis and design of kinematically redundant parallel manipulators. ASME J. Mech. Des. 126, 109–118 (2004)

    Article  Google Scholar 

  13. Bi, Z.M., Gruver, W.A., Zhang, W.J., Lang, S.Y.T.: Automated modeling of modular robotic configurations. Robot. Autom. Syst. 54, 1015–1025 (2006)

    Article  Google Scholar 

  14. Kryriakopoulos, K.J., Migadis, G., Sarriageorgidis, K.: The NTUA snake: Design, planar kinematics, and motion planning. J. Robot. Syst. 16, 37–72 (1999)

    Article  Google Scholar 

  15. Shugen, M.: Naoki T.: Analysis of creeping locomotion of a snake-like robot on a slope. Auton. Robots 20, 15–23 (2006)

    Article  Google Scholar 

  16. Paljug, E., Ohm, T., Hayati, S.: The JPL serpentine robot: a 12-DOF system for inspection. In: Proceedings of the IEEE International Conference on Robotics and Automation, Nagoya, Japan, pp. 3143–3148 (1995)

  17. Pettinato, J.S.: Stephanou, h.E.: Manipulability and stability of a tentacle based robot manipulator. In: Proceedings of the IEEE International Conference on Robotics and Automation, Scottsdale, AZ, vol. 1, pp. 458–463 (1989)

  18. Hanan, M.W., Walker, I.A.: Kinematics and the implementation of an elephant’s trunk manipulator and other continuum style robots. J. Robot. Syst. 20, 45–63 (2003)

    Article  Google Scholar 

  19. Tanev, T.K.: Kinematics of a hybrid (parallel-serial) robot manipulator. Mech. Mach. Theory 35, 1183–1196 (2000)

    Article  Google Scholar 

  20. Zheng, X.Z., Bin, H.Z., Luo, Y.G.: Kinematic analysis of a hybrid serial-parallel manipulator. Int. J. Adv. Manuf. Technol. 23, 925–930 (2004)

    Article  Google Scholar 

  21. Carbone, G., Ceccarelli, M.: A serial-parallel robotic architecture for surgical tasks. Robotica 23, 345–354 (2005)

    Article  Google Scholar 

  22. Carbone, G., Ceccarelli, M.: A stiffness analysis for a hybrid parallel-serial manipulator. Robotica 22, 567–576 (2005)

    Article  Google Scholar 

  23. Gallardo-Alvarado, J.: Kinematics of a hybrid manipulator by means of screw theory. Multibody Syst. Dyn. 14, 345–366 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  24. Lu, Y., Leinonen, T.: Solution and simulation of position-orientation for multi-spatial 3-RPS parallel mechanisms in series connection. Multibody Syst. Dyn. 14, 47–60 (2005)

    Article  MATH  Google Scholar 

  25. Lu, Y., Hu, B.: Solving driving forces of 2(3-SPR) serial-parallel manipulator by CAD variation geometry approach. ASME J. Mech. Des. 128, 1349–1351 (2006)

    Article  Google Scholar 

  26. Hunt, K.H.: Structural kinematics of in-parallel actuated robot arms. ASME J. Mech. Transpr. Autom. Des. 105, 705–712 (1983)

    Google Scholar 

  27. Lee, K.M., Sha, D.K.: Kinematic analysis of a three-degree-of-freedom in-parallel actuated manipulator. In: Proceedings IEEE International Conference on Robotics and Automation, vol. 1, pp. 345–350 (1987)

  28. Kim, H.S., Tsai, L.-W.: Kinematic synthesis of a spatial 3-RPS parallel manipulator. ASME J. Mech. Des. 125, 92–97 (2003)

    Article  Google Scholar 

  29. Liu, C.H., Cheng, S.: Direct singular positions of 3RPS parallel manipulators. ASME J. Mech. Des. 126, 1006–1016 (2004)

    Article  Google Scholar 

  30. Huang, Z., Fang, Y.: Kinematic characteristics analysis of 3 DOF in-parallel actuated pyramid mechanism. Mech. Mach. Theory 31, 1009–1018 (1996)

    Article  Google Scholar 

  31. Fang, Y., Huang, Z.: Kinematics of a three-degree-of-freedom in-parallel actuated manipulator mechanism. Mech. Mach. Theory 32, 789–796 (1997)

    Article  Google Scholar 

  32. Huang, Z., Wang, J.: Identification of principal screws of 3-DOF parallel manipulators by quadric degeneration. Mech. Mach. Theory 36, 893–911 (2001)

    Article  MATH  Google Scholar 

  33. Agrawal, S.K.: Study of an in-parallel mechanism using reciprocal screws. In: Proceedings of 8th World Congress on TMM 405-408 (1990)

  34. Huang, Z., Wang, J.: Instantaneous motion analysis of deficient-rank 3-DOF parallel manipulators by means of principal screws. In: Proceedings of A Symposium Commemorating the Legacy, Works, and Life of Sir Robert Stawell Ball Upon the 100th Aniversary of A Treatise on the Theory of Screws (2000)

  35. Huang, Z., Wang, J., Fang, Y.: Analysis of instantaneous motions of deficient-rank 3-RPS parallel manipulators. Mech. Mach. Theory 37, 229–240 (2002)

    Article  MATH  Google Scholar 

  36. Gallardo, J., Orozco, H., Rodríguez, R., Rico, J.M.: Kinematics of a class of parallel manipulators which generates structures with three limbs. Multibody Syst. Dyn. 17, 27–46 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  37. Gallardo, J., Orozco, H., Rico, J.M.: Kinematics of 3-RPS parallel manipulators by means of screw theory. Int. J. Adv. Manuf. Technol. Published on line (2007): http://dx.doi.org/10.1007/s00170-006-0851-5

  38. Alizade, R., Bayram, C.: Structural synthesis of parallel manipulators. Mech. Mach. Theory 39, 857–870 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  39. Zlatanov, D., Bonev, I.A., Gosselin, C.M.: Constraint singularities of parallel mechanisms. In: IEEE International Conference on Robotics and Automation, ICRA 2002, vol. 1, pp. 496–502 (2002)

  40. Innocenti, C., Parenti-Castelli, V.: Direct position analysis of the Stewart platform mechanism. Mech. Mach. Theory 35, 611–621 (1990)

    Article  Google Scholar 

  41. Tsai, L.-W.: Robot Analysis. Wiley, New York (1999)

    Google Scholar 

  42. Rico, J.M., Duffy, J.: An Application of screw algebra to the acceleration analysis of serial chains. Mech. Mach. Theory 31, 445–457 (1996)

    Article  Google Scholar 

  43. Rico, J.M., Gallardo, J., Duffy, J.: Screw theory and higher order kinematic analysis of open serial and closed chains. Mech. Mach. Theory 34, 559–586 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  44. Rico, J.M., Duffy, J.: Forward and inverse acceleration analyses of in-parallel manipulators. ASME J. Mech. Des. 122, 299–303 (2000)

    Article  Google Scholar 

  45. Gallardo, J., Rico, J.M.: Screw theory and helicoidal fields. In: Proceedings of the ASME 1998 Design Engineering Technical Conference 1998. CD-ROM format, Paper DETC98/MECH-5893 (1998)

  46. Lipkin, H.: Time derivatives of screws with applications to dynamic and stiffness. Mech. Mach. Theory 40, 259–273 (2005)

    Article  MATH  Google Scholar 

  47. Gallardo, J., Rico, J.M., Frisoli, A., Checcacci, D., Bergamasco, M.: Dynamics of parallel manipulators by means of screw theory. Mech. Mach. Theory 38, 1113–1131 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  48. Gallardo-Alvarado, J., Rico-Martínez, J.M.: Jerk influence coefficients, via screw theory, of closed chains. Meccanica 36, 213–228 (2001)

    Article  MATH  Google Scholar 

  49. Ball, R.S.: A Treatise on the Theory of Screws. Cambridge University Press, Reprinted 1998

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Gallardo-Alvarado.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gallardo-Alvarado, J., Aguilar-Nájera, C.R., Casique-Rosas, L. et al. Solving the kinematics and dynamics of a modular spatial hyper-redundant manipulator by means of screw theory. Multibody Syst Dyn 20, 307–325 (2008). https://doi.org/10.1007/s11044-008-9121-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11044-008-9121-7

Keywords

Navigation