Transposed Poisson algebras, Novikov-Poisson algebras and 3-Lie algebras

C Bai, R Bai, L Guo, Y Wu - Journal of Algebra, 2023 - Elsevier
We introduce a dual notion of the Poisson algebra, called the transposed Poisson algebra,
by exchanging the roles of the two binary operations in the Leibniz rule defining the Poisson …

The algebraic and geometric classification of transposed Poisson algebras

PD Beites, AF Ouaridi, I Kaygorodov - Revista de la Real Academia de …, 2023 - Springer
The algebraic and geometric classification of transposed Poisson algebras | Revista de la Real
Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas Skip to main content …

[PDF][PDF] Non-associative algebraic structures: classification and structure

I Kaygorodov - Communications in Mathematics, 2023 - cm.episciences.org
arXiv:2306.00425v2 [math.RA] 1 Nov 2023 Page 1 Communications in Mathematics 32 (2024),
no. 3, 1–62 DOI: https://doi.org/10.46298/cm.11419 ©2024 Ivan Kaygorodov This is an open …

Poisson structures on finitary incidence algebras

I Kaygorodov, M Khrypchenko - Journal of Algebra, 2021 - Elsevier
Poisson structures on finitary incidence algebras - ScienceDirect Skip to main contentSkip to
article Elsevier logo Journals & Books Search RegisterSign in View PDF Download full issue …

[HTML][HTML] Transposed Poisson structures on Lie incidence algebras

I Kaygorodov, M Khrypchenko - Journal of Algebra, 2024 - Elsevier
Let X be a finite connected poset, K a field of characteristic zero and I (X, K) the incidence
algebra of X over K seen as a Lie algebra under the commutator product. In the first part of …

The algebraic classification and degenerations of nilpotent Poisson algebras

H Abdelwahab, E Barreiro, AJ Calderón, AF Ouaridi - Journal of Algebra, 2023 - Elsevier
Abstract We generalize the Skjelbred–Sund method, used to classify nilpotent low-
dimensional Lie algebras, in order to classify Poisson algebras with non-trivial annihilator …

Transposed Hom-Poisson and Hom-pre-Lie Poisson algebras and bialgebras

I Laraiedh, S Silvestrov - arXiv preprint arXiv:2106.03277, 2021 - arxiv.org
The notions of transposed Hom-Poisson and Hom-pre-Lie Poisson algebras are introduced.
Their bimodules and matched pairs are defined and the relevant properties and theorems …

Cluster algebra structures on Poisson nilpotent algebras

KR Goodearl, MT Yakimov - arXiv preprint arXiv:1801.01963, 2018 - arxiv.org
Various coordinate rings of varieties appearing in the theory of Poisson Lie groups and
Poisson homogeneous spaces belong to the large, axiomatically defined class of symmetric …

Finiteness theorems on hypersurfaces in partial differential-algebraic geometry

J Freitag, R Moosa - Advances in Mathematics, 2017 - Elsevier
Hrushovski's generalization and application of Jouanolou (1978)[9] is here refined and
extended to the partial differential setting with possibly nonconstant coefficient fields. In …

D-groups and the Dixmier–Moeglin equivalence

J Bell, O León Sánchez, R Moosa - Algebra & Number Theory, 2018 - msp.org
A differential-algebraic geometric analogue of the Dixmier–Moeglin equivalence is
articulated, and proven to hold for D-groups over the constants. The model theory of …