[HTML][HTML] A state-of-the-art survey on deep learning theory and architectures

MZ Alom, TM Taha, C Yakopcic, S Westberg, P Sidike… - electronics, 2019 - mdpi.com
In recent years, deep learning has garnered tremendous success in a variety of application
domains. This new field of machine learning has been growing rapidly and has been …

The history began from alexnet: A comprehensive survey on deep learning approaches

MZ Alom, TM Taha, C Yakopcic, S Westberg… - arXiv preprint arXiv …, 2018 - arxiv.org
Deep learning has demonstrated tremendous success in variety of application domains in
the past few years. This new field of machine learning has been growing rapidly and applied …

A survey of zero-shot generalisation in deep reinforcement learning

R Kirk, A Zhang, E Grefenstette, T Rocktäschel - Journal of Artificial …, 2023 - jair.org
The study of zero-shot generalisation (ZSG) in deep Reinforcement Learning (RL) aims to
produce RL algorithms whose policies generalise well to novel unseen situations at …

On the binding problem in artificial neural networks

K Greff, S Van Steenkiste, J Schmidhuber - arXiv preprint arXiv …, 2020 - arxiv.org
Contemporary neural networks still fall short of human-level generalization, which extends
far beyond our direct experiences. In this paper, we argue that the underlying cause for this …

Causal machine learning: A survey and open problems

J Kaddour, A Lynch, Q Liu, MJ Kusner… - arXiv preprint arXiv …, 2022 - arxiv.org
Causal Machine Learning (CausalML) is an umbrella term for machine learning methods
that formalize the data-generation process as a structural causal model (SCM). This …

An introduction to deep reinforcement learning

V François-Lavet, P Henderson, R Islam… - … and Trends® in …, 2018 - nowpublishers.com
Deep reinforcement learning is the combination of reinforcement learning (RL) and deep
learning. This field of research has been able to solve a wide range of complex …

Model-based reinforcement learning: A survey

TM Moerland, J Broekens, A Plaat… - … and Trends® in …, 2023 - nowpublishers.com
Sequential decision making, commonly formalized as Markov Decision Process (MDP)
optimization, is an important challenge in artificial intelligence. Two key approaches to this …

Artificial intelligence: A guide for thinking humans

M Mitchell - 2019 - degruyter.com
Melanie Mitchell the Davis Professor at the Santa Fe Institute and Professor of Computer
Science at Portland State University has published a timely and stimulating book from an …

A survey of zero-shot learning: Settings, methods, and applications

W Wang, VW Zheng, H Yu, C Miao - ACM Transactions on Intelligent …, 2019 - dl.acm.org
Most machine-learning methods focus on classifying instances whose classes have already
been seen in training. In practice, many applications require classifying instances whose …

Deep reinforcement learning: A brief survey

K Arulkumaran, MP Deisenroth… - IEEE Signal …, 2017 - ieeexplore.ieee.org
Deep reinforcement learning (DRL) is poised to revolutionize the field of artificial intelligence
(AI) and represents a step toward building autonomous systems with a higher-level …