Dewave: Discrete encoding of eeg waves for eeg to text translation

Y Duan, C Chau, Z Wang… - Advances in Neural …, 2024 - proceedings.neurips.cc
The translation of brain dynamics into natural language is pivotal for brain-computer
interfaces (BCIs), a field that has seen substantial growth in recent years. With the swift …

Dewave: Discrete eeg waves encoding for brain dynamics to text translation

Y Duan, J Zhou, Z Wang, YK Wang, CT Lin - arXiv preprint arXiv …, 2023 - arxiv.org
The translation of brain dynamics into natural language is pivotal for brain-computer
interfaces (BCIs), a field that has seen substantial growth in recent years. With the swift …

Advancing task recognition towards artificial limbs control with ReliefF-based deep neural network extreme learning

LA Al-Haddad, WH Alawee, A Basem - Computers in Biology and Medicine, 2024 - Elsevier
In the rapidly advancing field of biomedical engineering, effective real-time control of
artificial limbs is a pressing research concern. Addressing this, the current study introduces a …

Belt: Bootstrapping electroencephalography-to-language decoding and zero-shot sentiment classification by natural language supervision

J Zhou, Y Duan, YC Chang, YK Wang… - arXiv preprint arXiv …, 2023 - arxiv.org
This paper presents BELT, a novel model and learning framework for the pivotal topic of
brain-to-language translation research. The translation from noninvasive brain signals into …

Masked EEG Modeling for Driving Intention Prediction

J Zhou, J Sia, Y Duan, YC Chang… - … Joint Conference on …, 2024 - ieeexplore.ieee.org
Driving under drowsy conditions significantly escalates the risk of vehicular accidents.
Recent endeavors to prevent driving accidents have focused on using …

Adaptive search for broad attention based vision transformers

N Li, Y Chen, D Zhao - Neurocomputing, 2025 - Elsevier
Abstract Vision Transformer (ViT) has prevailed among computer vision tasks for its powerful
capability of image representation recently. Frustratingly, the manual design of efficient …

Advancing biomedical engineering: Leveraging Hjorth features for electroencephalography signal analysis

WH Alawee, A Basem, LA Al-Haddad - Journal of Electrical …, 2023 - sciendo.com
Materials and methods At the heart of this investigation lies the MILimbEEG Dataset, an
extensive collection of EEG recordings harvested from a heterogeneous group of 60 …

Exploring CEEMDAN and LMD domains entropy features for decoding EEG-based emotion patterns

N Pusarla, A Singh, S Tripathi, A Vujji… - IEEE Access, 2024 - ieeexplore.ieee.org
Electroencephalogram (EEG) signal-based emotion classification is vital in the ever-growing
human-computer interface (HCI) applications. However, the chaotic, non-stationary, and …

A Neural Architecture Search CNN for Alzheimer's Disease Classification

NS Awarayi, F Twum, JB Hayfron-Acquah… - … on Computer and …, 2024 - ph01.tci-thaijo.org
The evolution of automated machine learning (AutoML) is gradually reengineering the
design of deep learning architectures for various imaging tasks. AutoML effectively develops …

Estrategia de procesamiento de señales EEG en sistemas BCI utilizando aprendizaje profundo y medidas de conectividad

YA Gomez Rivera - repositorio.unal.edu.co
Las Interfaces Cerebro Computadora (BCI) basadas en Electroencefalografía (EEG) crean
una conexión directa entre el cerebro humano y una computadora. Los paradigmas de …