[PDF][PDF] Overview of Long Memory for Economic and Financial Time Series Dataset and Related Time Series Models: A Review Study.

MT Ismail, RS Al-Gounmeein - IAENG International Journal of Applied …, 2022 - iaeng.org
Verifying the existence of long-memory feature is a crucial activity performed during the
development process of the autoregressive integrated moving average (ARIMA) model. The …

Forecasting the romanian unemployment rate in time of health crisis—a univariate vs. multivariate time series approach

AAM Davidescu, SA Apostu, A Marin - International Journal of …, 2021 - mdpi.com
Economic crises cause significant shortages in disposable income and a sharp decline in
the living conditions, affecting healthcare sector, hitting the profitability and sustainability of …

[PDF][PDF] Comparing the performances of artificial neural networks models based on autoregressive fractionally integrated moving average models

RS Al-Gounmeein, MT Ismail - IAENG International Journal of …, 2021 - researchgate.net
The autoregressive fractional integrated moving average (ARFIMA) has become one of the
popular linear models in time series modeling and forecasting in the past decades. Recent …

An Optimal Investment Portfolio Constructed with Fractal Analysis and Long Memory Models

R Garafutdinov - Science and Global Challenges of the 21st Century …, 2022 - Springer
The key condition for applying modern portfolio theory is the stock market efficiency. At the
same time, the results of numerous studies show that markets do not always meet the …

[PDF][PDF] Исследование влияния некоторых параметров модели ARFIMA на точность прогноза финансовых временных рядов

РВ Гарафутдинов - Прикладная эконометрика, 2021 - pe.cemi.rssi.ru
В работе проводится анализ влияния параметров модели ARFIMA на точность про‑
гнозирования финансовых временных рядов на примере искусственно …

Long Memory Time-series Model (ARFIMA) Based Modelling of Jute Prices in the Samsi Market of Malda District, West Bengal

CR Sahu, S Basak, DS Gupta - Journal of …, 2024 - journal.scienceopenlibraries.com
The objective of this paper is modeling and forecasting the weekly jute prices of Samsi
market in the Malda district of West Bengal in the presence of long memory process. The …

Using fuzzy-ARFIMA models to predict births in Basra governorate

RA Zalan - Journal of Physics: Conference Series, 2021 - iopscience.iop.org
Today's time series analysis is one of the most important statistical methods in forecasting,
and it has been used in many economic, industrial, commercial and science fields, by …

Penerapan Model Autoregressive Fractionally Integrated Moving Average (ARFIMA) dalam Meramalkan Harga Saham PT. ANTAM Tbk

H Khairani - 2023 - scholar.unand.ac.id
Berinvestasi adalah salah satu cara untuk meningkatkan kesejahteraan dan kekayaan di
masa depan, saham adalah salah satu pilihan investasi yang paling banyak diminati oleh …

[PDF][PDF] DEVELOPMENT OF SOFTWARE AND ALGORITHMIC EQUIPMENT FOR PREDICTION OF RIVER WATER POLLUTION USING FRACTAL ANALYSIS …

M Bordun, O Mokrytska - 2024 - science.lpnu.ua
This paper explores the application of the ARFIMA fractal model for prediction of the
dynamics of river water pollution based on BOD measure. The study begins by conducting a …

Analysis and Prediction of Shanghai's GDP Based on ARFIMA and ARIMA Models

J Xu, P Yuan - 2024 10th International Conference on Humanities …, 2024 - atlantis-press.com
This article takes Shanghai's GDP as the research object and predicts and analyzes the
GDP of Shanghai for the next ten years by comparing two time series models: ARFIMA and …