Machine-learning-based disease diagnosis: A comprehensive review

MM Ahsan, SA Luna, Z Siddique - Healthcare, 2022 - mdpi.com
Globally, there is a substantial unmet need to diagnose various diseases effectively. The
complexity of the different disease mechanisms and underlying symptoms of the patient …

Machine learning-based heart disease diagnosis: A systematic literature review

MM Ahsan, Z Siddique - Artificial Intelligence in Medicine, 2022 - Elsevier
Heart disease is one of the significant challenges in today's world and one of the leading
causes of many deaths worldwide. Recent advancement of machine learning (ML) …

Performance of deep learning vs machine learning in plant leaf disease detection

R Sujatha, JM Chatterjee, NZ Jhanjhi… - Microprocessors and …, 2021 - Elsevier
Plants are recognized as essential as they are the primary source of humanity's energy
production since they are having nutritious, medicinal, etc. values. At any time between crop …

A review of principal component analysis algorithm for dimensionality reduction

BMS Hasan, AM Abdulazeez - Journal of Soft Computing …, 2021 - publisher.uthm.edu.my
Big databases are increasingly widespread and are therefore hard to understand, in
exploratory biomedicine science, big data in health research is highly exciting because data …

A transformer-based deep neural network for arrhythmia detection using continuous ECG signals

R Hu, J Chen, L Zhou - Computers in Biology and Medicine, 2022 - Elsevier
Recently, much effort has been put into solving arrhythmia classification problems with
machine learning-based methods. However, inter-heartbeat dependencies have been …

Arrhythmia detection using deep convolutional neural network with long duration ECG signals

Ö Yıldırım, P Pławiak, RS Tan, UR Acharya - Computers in biology and …, 2018 - Elsevier
This article presents a new deep learning approach for cardiac arrhythmia (17 classes)
detection based on long-duration electrocardiography (ECG) signal analysis …

A new approach for arrhythmia classification using deep coded features and LSTM networks

O Yildirim, UB Baloglu, RS Tan, EJ Ciaccio… - Computer methods and …, 2019 - Elsevier
Background and objective For diagnosis of arrhythmic heart problems, electrocardiogram
(ECG) signals should be recorded and monitored. The long-term signal records obtained …

[PDF][PDF] Novel deep genetic ensemble of classifiers for arrhythmia detection using ECG signals

P Pławiak, UR Acharya - Neural Comput. Appl, 2020 - researchgate.net
The heart disease is one of the most serious health problems in today's world. Over 50
million persons have cardiovascular diseases around the world. Our proposed work based …

Applying artificial intelligence to wearable sensor data to diagnose and predict cardiovascular disease: a review

JD Huang, J Wang, E Ramsey, G Leavey, TJA Chico… - Sensors, 2022 - mdpi.com
Cardiovascular disease (CVD) is the world's leading cause of mortality. There is significant
interest in using Artificial Intelligence (AI) to analyse data from novel sensors such as …

Generalization of convolutional neural networks for ECG classification using generative adversarial networks

AM Shaker, M Tantawi, HA Shedeed, MF Tolba - IEEE Access, 2020 - ieeexplore.ieee.org
Electrocardiograms (ECGs) play a vital role in the clinical diagnosis of heart diseases. An
ECG record of the heart signal over time can be used to discover numerous arrhythmias. Our …