Artificial intelligence in histopathology: enhancing cancer research and clinical oncology

A Shmatko, N Ghaffari Laleh, M Gerstung, JN Kather - Nature cancer, 2022 - nature.com
Artificial intelligence (AI) methods have multiplied our capabilities to extract quantitative
information from digital histopathology images. AI is expected to reduce workload for human …

Tumour-infiltrating lymphocytes: from prognosis to treatment selection

K Brummel, AL Eerkens, M de Bruyn… - British Journal of …, 2023 - nature.com
Tumour-infiltrating lymphocytes (TILs) are considered crucial in anti-tumour immunity.
Accordingly, the presence of TILs contains prognostic and predictive value. In 2011, we …

A foundation model for clinical-grade computational pathology and rare cancers detection

E Vorontsov, A Bozkurt, A Casson, G Shaikovski… - Nature medicine, 2024 - nature.com
The analysis of histopathology images with artificial intelligence aims to enable clinical
decision support systems and precision medicine. The success of such applications …

Transformer-based biomarker prediction from colorectal cancer histology: A large-scale multicentric study

SJ Wagner, D Reisenbüchler, NP West, JM Niehues… - Cancer Cell, 2023 - cell.com
Deep learning (DL) can accelerate the prediction of prognostic biomarkers from routine
pathology slides in colorectal cancer (CRC). However, current approaches rely on …

Swarm learning for decentralized artificial intelligence in cancer histopathology

OL Saldanha, P Quirke, NP West, JA James… - Nature medicine, 2022 - nature.com
Artificial intelligence (AI) can predict the presence of molecular alterations directly from
routine histopathology slides. However, training robust AI systems requires large datasets …

Benchmarking weakly-supervised deep learning pipelines for whole slide classification in computational pathology

NG Laleh, HS Muti, CML Loeffler, A Echle… - Medical image …, 2022 - Elsevier
Artificial intelligence (AI) can extract visual information from histopathological slides and
yield biological insight and clinical biomarkers. Whole slide images are cut into thousands of …

A population-level digital histologic biomarker for enhanced prognosis of invasive breast cancer

M Amgad, JM Hodge, MAT Elsebaie, C Bodelon… - Nature Medicine, 2024 - nature.com
Breast cancer is a heterogeneous disease with variable survival outcomes. Pathologists
grade the microscopic appearance of breast tissue using the Nottingham criteria, which are …

Validation of MSIntuit as an AI-based pre-screening tool for MSI detection from colorectal cancer histology slides

C Saillard, R Dubois, O Tchita, N Loiseau… - Nature …, 2023 - nature.com
Abstract Mismatch Repair Deficiency (dMMR)/Microsatellite Instability (MSI) is a key
biomarker in colorectal cancer (CRC). Universal screening of CRC patients for MSI status is …

Scaling self-supervised learning for histopathology with masked image modeling

A Filiot, R Ghermi, A Olivier, P Jacob, L Fidon… - medRxiv, 2023 - medrxiv.org
Computational pathology is revolutionizing the field of pathology by integrating advanced
computer vision and machine learning technologies into diagnostic workflows. It offers …

Artificial intelligence to identify genetic alterations in conventional histopathology

D Cifci, S Foersch, JN Kather - The Journal of Pathology, 2022 - Wiley Online Library
Precision oncology relies on the identification of targetable molecular alterations in tumor
tissues. In many tumor types, a limited set of molecular tests is currently part of standard …