Semilinear structural damped waves

M D'Abbicco, M Reissig - Mathematical Methods in the Applied …, 2014 - Wiley Online Library
We study the Cauchy problem for the semilinear structural damped wave equation with
source term with σ∈(0, 1] in space dimension n≥ 2 and with a positive constant μ. We are …

[HTML][HTML] Diffusion phenomena for the wave equation with structural damping in the Lp− Lq framework

M DʼAbbicco, MR Ebert - Journal of Differential Equations, 2014 - Elsevier
In this paper, we study diffusion phenomena for the wave equation with structural damping
utt− Δ u+ 2 a (− Δ) σ ut= 0, u (0, x)= u 0 (x), ut (0, x)= u 1 (x), with a> 0 and σ∈(0, 1/2). We …

Qualitative properties of solutions to a time-space fractional evolution equation

A Fino, M Kirane - Quarterly of Applied Mathematics, 2012 - ams.org
In this article, we analyze a spatio-temporally nonlocal nonlinear parabolic equation. First,
we validate the equation by an existence-uniqueness result. Then, we show that blowing-up …

An application of Lp− Lq decay estimates to the semi-linear wave equation with parabolic-like structural damping

M D'Abbicco, MR Ebert - Nonlinear Analysis: Theory, Methods & …, 2014 - Elsevier
In this paper we study the global existence of small data solutions to utt−△ u+ 2 a (−△) σ
ut=| u| p, u (0, x)= u 0 (x), ut (0, x)= u 1 (x), where a> 0, σ∈(0, 1/2] and p> 1. Assuming small …

[PDF][PDF] Global solutions for a nonlinear integral equation with a generalized heat kernel

K Ishige, T Kawakami… - Discrete Contin. Dyn …, 2014 - pdfs.semanticscholar.org
GLOBAL SOLUTIONS FOR A NONLINEAR INTEGRAL EQUATION WITH A GENERALIZED
HEAT KERNEL Kazuhiro Ishige Tatsuki Kawakami Kanako Kobaya Page 1 DISCRETE AND …

Asymptotics for a nonlinear integral equation with a generalized heat kernel

K Ishige, T Kawakami, K Kobayashi - arXiv preprint arXiv:1309.7118, 2013 - arxiv.org
This paper is concerned with a nonlinear integral equation $$(P)\qquad u (x, t)=\int_ {{\bf R}^
N} G (xy, t)\varphi (y) dy+\int_0^ t\int_ {{\bf R}^ N} G (xy, ts) f (y, s: u) dyds,\quad $$ where …

Critical exponent for damped wave equations with nonlinear memory

AZ Fino - Nonlinear Analysis: Theory, Methods & Applications, 2011 - Elsevier
We consider the Cauchy problem in R n, n≥ 1, for a semilinear damped wave equation with
nonlinear memory. Global existence and asymptotic behavior as t→∞ of small data …

A test function method for evolution equations with fractional powers of the Laplace operator

M D'Abbicco, K Fujiwara - Nonlinear Analysis, 2021 - Elsevier
In this paper, we discuss a test function method to obtain nonexistence of global-in-time
solutions for higher order evolution equations with fractional derivatives and a power …

Critical exponent for semi-linear structurally damped wave equation of derivative type

TA Dao, AZ Fino - arXiv preprint arXiv:2004.08486, 2020 - arxiv.org
Main purpose of this paper is to study the following semi-linear structurally damped wave
equation with nonlinearity of derivative type: $$ u_ {tt}-\Delta u+\mu (-\Delta)^{\sigma/2} u_t …

Asymptotic expansions of solutions of fractional diffusion equations

K Ishige, T Kawakami, H Michihisa - SIAM Journal on Mathematical Analysis, 2017 - SIAM
In this paper we obtain the precise description of the asymptotic behavior of the solution u of
the fractional diffusion equation \partial_tu+(-Δ)^θ2u=0\quadin\bfR^N*(0,∞) with the initial …