Recent advances in decision trees: An updated survey

VG Costa, CE Pedreira - Artificial Intelligence Review, 2023 - Springer
Abstract Decision Trees (DTs) are predictive models in supervised learning, known not only
for their unquestionable utility in a wide range of applications but also for their interpretability …

Dynamic neural networks: A survey

Y Han, G Huang, S Song, L Yang… - IEEE Transactions on …, 2021 - ieeexplore.ieee.org
Dynamic neural network is an emerging research topic in deep learning. Compared to static
models which have fixed computational graphs and parameters at the inference stage …

Adaptive rotated convolution for rotated object detection

Y Pu, Y Wang, Z Xia, Y Han, Y Wang… - Proceedings of the …, 2023 - openaccess.thecvf.com
Rotated object detection aims to identify and locate objects in images with arbitrary
orientation. In this scenario, the oriented directions of objects vary considerably across …

Tabnet: Attentive interpretable tabular learning

SÖ Arik, T Pfister - Proceedings of the AAAI conference on artificial …, 2021 - ojs.aaai.org
We propose a novel high-performance and interpretable canonical deep tabular data
learning architecture, TabNet. TabNet uses sequential attention to choose which features to …

Neural prototype trees for interpretable fine-grained image recognition

M Nauta, R Van Bree, C Seifert - Proceedings of the IEEE …, 2021 - openaccess.thecvf.com
Prototype-based methods use interpretable representations to address the black-box nature
of deep learning models, in contrast to post-hoc explanation methods that only approximate …

Closed-loop neural prostheses with on-chip intelligence: A review and a low-latency machine learning model for brain state detection

B Zhu, U Shin, M Shoaran - IEEE transactions on biomedical …, 2021 - ieeexplore.ieee.org
The application of closed-loop approaches in systems neuroscience and therapeutic
stimulation holds great promise for revolutionizing our understanding of the brain and for …

Vit-net: Interpretable vision transformers with neural tree decoder

S Kim, J Nam, BC Ko - International conference on machine …, 2022 - proceedings.mlr.press
Vision transformers (ViTs), which have demonstrated a state-of-the-art performance in image
classification, can also visualize global interpretations through attention-based contributions …

Attention convolutional binary neural tree for fine-grained visual categorization

R Ji, L Wen, L Zhang, D Du, Y Wu… - Proceedings of the …, 2020 - openaccess.thecvf.com
Fine-grained visual categorization (FGVC) is an important but challenging task due to high
intra-class variances and low inter-class variances caused by deformation, occlusion …

Adaptive neural decision tree for EEG based emotion recognition

Y Zheng, J Ding, F Liu, D Wang - Information Sciences, 2023 - Elsevier
An adaptive neural decision tree is investigated to recognize electroencephalogram (EEG)
emotion signal with ability of intelligently selecting network structure. Firstly, to overcome …

[PDF][PDF] Distilling deep reinforcement learning policies in soft decision trees

Y Coppens, K Efthymiadis, T Lenaerts… - Proceedings of the …, 2019 - dipot.ulb.ac.be
An important step in Reinforcement Learning (RL) research is to create mechanisms that
give higher level insights into the black-box policy models used nowadays and provide …