Wild patterns reloaded: A survey of machine learning security against training data poisoning

AE Cinà, K Grosse, A Demontis, S Vascon… - ACM Computing …, 2023 - dl.acm.org
The success of machine learning is fueled by the increasing availability of computing power
and large training datasets. The training data is used to learn new models or update existing …

Backdoor attacks and countermeasures on deep learning: A comprehensive review

Y Gao, BG Doan, Z Zhang, S Ma, J Zhang, A Fu… - arXiv preprint arXiv …, 2020 - arxiv.org
This work provides the community with a timely comprehensive review of backdoor attacks
and countermeasures on deep learning. According to the attacker's capability and affected …

Invisible backdoor attack with sample-specific triggers

Y Li, Y Li, B Wu, L Li, R He… - Proceedings of the IEEE …, 2021 - openaccess.thecvf.com
Recently, backdoor attacks pose a new security threat to the training process of deep neural
networks (DNNs). Attackers intend to inject hidden backdoors into DNNs, such that the …

Backdoor learning: A survey

Y Li, Y Jiang, Z Li, ST Xia - IEEE Transactions on Neural …, 2022 - ieeexplore.ieee.org
Backdoor attack intends to embed hidden backdoors into deep neural networks (DNNs), so
that the attacked models perform well on benign samples, whereas their predictions will be …

Advances and open problems in federated learning

P Kairouz, HB McMahan, B Avent… - … and trends® in …, 2021 - nowpublishers.com
Federated learning (FL) is a machine learning setting where many clients (eg, mobile
devices or whole organizations) collaboratively train a model under the orchestration of a …

Privacy and robustness in federated learning: Attacks and defenses

L Lyu, H Yu, X Ma, C Chen, L Sun… - IEEE transactions on …, 2022 - ieeexplore.ieee.org
As data are increasingly being stored in different silos and societies becoming more aware
of data privacy issues, the traditional centralized training of artificial intelligence (AI) models …

Label poisoning is all you need

R Jha, J Hayase, S Oh - Advances in Neural Information …, 2023 - proceedings.neurips.cc
In a backdoor attack, an adversary injects corrupted data into a model's training dataset in
order to gain control over its predictions on images with a specific attacker-defined trigger. A …

Untargeted backdoor watermark: Towards harmless and stealthy dataset copyright protection

Y Li, Y Bai, Y Jiang, Y Yang… - Advances in Neural …, 2022 - proceedings.neurips.cc
Deep neural networks (DNNs) have demonstrated their superiority in practice. Arguably, the
rapid development of DNNs is largely benefited from high-quality (open-sourced) datasets …

Strip: A defence against trojan attacks on deep neural networks

Y Gao, C Xu, D Wang, S Chen… - Proceedings of the 35th …, 2019 - dl.acm.org
A recent trojan attack on deep neural network (DNN) models is one insidious variant of data
poisoning attacks. Trojan attacks exploit an effective backdoor created in a DNN model by …

Badencoder: Backdoor attacks to pre-trained encoders in self-supervised learning

J Jia, Y Liu, NZ Gong - 2022 IEEE Symposium on Security and …, 2022 - ieeexplore.ieee.org
Self-supervised learning in computer vision aims to pre-train an image encoder using a
large amount of unlabeled images or (image, text) pairs. The pre-trained image encoder can …