A review on 2D instance segmentation based on deep neural networks

W Gu, S Bai, L Kong - Image and Vision Computing, 2022 - Elsevier
Image instance segmentation involves labeling pixels of images with classes and instances,
which is one of the pivotal technologies in many domains, such as natural scenes …

Semantic segmentation using Vision Transformers: A survey

H Thisanke, C Deshan, K Chamith… - … Applications of Artificial …, 2023 - Elsevier
Semantic segmentation has a broad range of applications in a variety of domains including
land coverage analysis, autonomous driving, and medical image analysis. Convolutional …

Segment anything

A Kirillov, E Mintun, N Ravi, H Mao… - Proceedings of the …, 2023 - openaccess.thecvf.com
Abstract We introduce the Segment Anything (SA) project: a new task, model, and dataset for
image segmentation. Using our efficient model in a data collection loop, we built the largest …

Dinov2: Learning robust visual features without supervision

M Oquab, T Darcet, T Moutakanni, H Vo… - arXiv preprint arXiv …, 2023 - arxiv.org
The recent breakthroughs in natural language processing for model pretraining on large
quantities of data have opened the way for similar foundation models in computer vision …

Segment everything everywhere all at once

X Zou, J Yang, H Zhang, F Li, L Li… - Advances in …, 2024 - proceedings.neurips.cc
In this work, we present SEEM, a promotable and interactive model for segmenting
everything everywhere all at once in an image. In SEEM, we propose a novel and versatile …

Image as a foreign language: Beit pretraining for vision and vision-language tasks

W Wang, H Bao, L Dong, J Bjorck… - Proceedings of the …, 2023 - openaccess.thecvf.com
A big convergence of language, vision, and multimodal pretraining is emerging. In this work,
we introduce a general-purpose multimodal foundation model BEiT-3, which achieves …

Internimage: Exploring large-scale vision foundation models with deformable convolutions

W Wang, J Dai, Z Chen, Z Huang, Z Li… - Proceedings of the …, 2023 - openaccess.thecvf.com
Compared to the great progress of large-scale vision transformers (ViTs) in recent years,
large-scale models based on convolutional neural networks (CNNs) are still in an early …

Eva: Exploring the limits of masked visual representation learning at scale

Y Fang, W Wang, B Xie, Q Sun, L Wu… - Proceedings of the …, 2023 - openaccess.thecvf.com
We launch EVA, a vision-centric foundation model to explore the limits of visual
representation at scale using only publicly accessible data. EVA is a vanilla ViT pre-trained …

Segnext: Rethinking convolutional attention design for semantic segmentation

MH Guo, CZ Lu, Q Hou, Z Liu… - Advances in Neural …, 2022 - proceedings.neurips.cc
We present SegNeXt, a simple convolutional network architecture for semantic
segmentation. Recent transformer-based models have dominated the field of se-mantic …

Planning-oriented autonomous driving

Y Hu, J Yang, L Chen, K Li, C Sima… - Proceedings of the …, 2023 - openaccess.thecvf.com
Modern autonomous driving system is characterized as modular tasks in sequential order,
ie, perception, prediction, and planning. In order to perform a wide diversity of tasks and …