Unimodality problems in Ehrhart theory

B Braun - Recent trends in combinatorics, 2016 - Springer
Ehrhart theory is the study of sequences recording the number of integer points in non-
negative integral dilates of rational polytopes. For a given lattice polytope, this sequence is …

ℎ*-polynomials of zonotopes

M Beck, K Jochemko, E McCullough - Transactions of the American …, 2019 - ams.org
The Ehrhart polynomial of a lattice polytope $ P $ encodes information about the number of
integer lattice points in positive integral dilates of $ P $. The $ h^\ast $-polynomial of $ P $ is …

Combinatorial positivity of translation-invariant valuations and a discrete Hadwiger theorem

K Jochemko, R Sanyal - Journal of the European Mathematical Society, 2018 - ems.press
Combinatorial positivity of translation-invariant valuations and a discrete Hadwiger theorem
Page 1 DOI 10.4171/JEMS/809 J. Eur. Math. Soc. 20, 2181–2208 c European Mathematical …

Generalized permutahedra: Minkowski linear functionals and Ehrhart positivity

K Jochemko, M Ravichandran - Mathematika, 2022 - Wiley Online Library
We characterize all signed Minkowski sums that define generalized permutahedra,
extending results of Ardila–Benedetti–Doker (Discrete Comput. Geom. 43 (2010), no. 4, 841 …