Deep learning techniques for classification of electroencephalogram (EEG) motor imagery (MI) signals: A review

H Altaheri, G Muhammad, M Alsulaiman… - Neural Computing and …, 2023 - Springer
The brain–computer interface (BCI) is an emerging technology that has the potential to
revolutionize the world, with numerous applications ranging from healthcare to human …

A review on transfer learning in EEG signal analysis

Z Wan, R Yang, M Huang, N Zeng, X Liu - Neurocomputing, 2021 - Elsevier
Electroencephalogram (EEG) signal analysis, which is widely used for human-computer
interaction and neurological disease diagnosis, requires a large amount of labeled data for …

Deep learning for motor imagery EEG-based classification: A review

A Al-Saegh, SA Dawwd, JM Abdul-Jabbar - Biomedical Signal Processing …, 2021 - Elsevier
Objectives The availability of large and varied Electroencephalogram (EEG) datasets,
rapidly advances and inventions in deep learning techniques, and highly powerful and …

Brain-computer interface: Advancement and challenges

MF Mridha, SC Das, MM Kabir, AA Lima, MR Islam… - Sensors, 2021 - mdpi.com
Brain-Computer Interface (BCI) is an advanced and multidisciplinary active research domain
based on neuroscience, signal processing, biomedical sensors, hardware, etc. Since the …

BENDR: Using transformers and a contrastive self-supervised learning task to learn from massive amounts of EEG data

D Kostas, S Aroca-Ouellette, F Rudzicz - Frontiers in Human …, 2021 - frontiersin.org
Deep neural networks (DNNs) used for brain–computer interface (BCI) classification are
commonly expected to learn general features when trained across a variety of contexts, such …

EEG-based brain-computer interfaces (BCIs): A survey of recent studies on signal sensing technologies and computational intelligence approaches and their …

X Gu, Z Cao, A Jolfaei, P Xu, D Wu… - … /ACM transactions on …, 2021 - ieeexplore.ieee.org
Brain-Computer interfaces (BCIs) enhance the capability of human brain activities to interact
with the environment. Recent advancements in technology and machine learning algorithms …

An efficient multi-scale CNN model with intrinsic feature integration for motor imagery EEG subject classification in brain-machine interfaces

AM Roy - Biomedical Signal Processing and Control, 2022 - Elsevier
Objective Electroencephalogram (EEG) based motor imagery (MI) classification is an
important aspect in brain-machine interfaces (BMIs) which bridges between neural system …

Brain-controlled robotic arm system based on multi-directional CNN-BiLSTM network using EEG signals

JH Jeong, KH Shim, DJ Kim… - IEEE Transactions on …, 2020 - ieeexplore.ieee.org
Brain-machine interfaces (BMIs) can be used to decode brain activity into commands to
control external devices. This paper presents the decoding of intuitive upper extremity …

A 2D CNN-LSTM hybrid algorithm using time series segments of EEG data for motor imagery classification

J Wang, S Cheng, J Tian, Y Gao - Biomedical Signal Processing and …, 2023 - Elsevier
Motor imagery-based brain–computer interaction (MI-BCI) converts human neural activity
into computational information, often used as commands, by recognizing …

Vgg16 feature extractor with extreme gradient boost classifier for pancreas cancer prediction

W Bakasa, S Viriri - Journal of Imaging, 2023 - mdpi.com
The prognosis of patients with pancreatic ductal adenocarcinoma (PDAC) is greatly
improved by an early and accurate diagnosis. Several studies have created automated …