[HTML][HTML] Nonlinear seismic inversion by physics-informed Caianiello convolutional neural networks for overpressure prediction of source rocks in the offshore Xihu …

Y Cheng, LY Fu - Journal of Petroleum Science and Engineering, 2022 - Elsevier
Pressure prediction has long been one of subject of research focuses in petroleum geology
and exploration, but is traditionally limited to moderately overpressured formations due to …

Deep learning for multidimensional seismic impedance inversion

X Wu, S Yan, Z Bi, S Zhang, H Si - Geophysics, 2021 - library.seg.org
Deep-learning (DL) methods have shown promising performance in predicting acoustic
impedance from seismic data that is typically considered as an ill-posed problem for …

Self-supervised pre-training vision transformer with masked autoencoders for building subsurface model

Y Li, T Alkhalifah, J Huang, Z Li - IEEE Transactions on …, 2023 - ieeexplore.ieee.org
Building subsurface models is a very important but challenging task in hydrocarbon
exploration and development. The subsurface elastic properties are usually sourced from …

Multiple-domain, simultaneous joint inversion of geophysical data with application to subsalt imaging

M De Stefano, F Golfré Andreasi, S Re, M Virgilio… - Geophysics, 2011 - library.seg.org
We describe an effective method for joining the benefits of inversion of different kinds of
measurements. We show the simultaneous joint inversion objective function, which allows …

[PDF][PDF] 高分辨率非线性储层物性参数反演方法和应用

吴媚, 符力耘, 李维新 - 地球物理学报, 2008 - researchgate.net
摘要对于陆相沉积环境下的复杂隐蔽岩性储层, 由于观测信息不准确, 如信息重叠,
信息缺失和噪音污染, 以及岩石物理关系模糊等原因, 储层横向预测存在不惟一性 …

Small-data-driven fast seismic simulations for complex media using physics-informed Fourier neural operators

W Wei, LY Fu - Geophysics, 2022 - library.seg.org
Deep learning (DL) seismic simulations have become a leading-edge field that could
provide an effective alternative to traditional numerical solvers. We have developed a small …

Porosity prediction from prestack seismic data via deep learning: incorporating a low-frequency porosity model

J Liu, L Zhao, M Xu, X Zhao, Y You… - Journal of Geophysics …, 2023 - academic.oup.com
Porosity prediction from seismic data is of considerable importance in reservoir quality
assessment, geological model building, and flow unit delineation. Deep learning …

Absolute acoustic impedance inversion using convolutional neural networks with transfer learning

S Liu, W Ni, W Fang, L Fu - Geophysics, 2023 - library.seg.org
Acoustic impedance (AI) is a key parameter frequently used for characterizing reservoirs in
the oil and gas industry. The absolute AI can be divided into background and high …

[PDF][PDF] 多尺度地震资料联合反演方法研究

曹丹平, 印兴耀, 张繁昌, 孔庆丰 - 地球物理学报, 2009 - dsjyj.com.cn
摘要常规三维地面地震反演不可避免的存在多解性和分辨率不高的缺陷, 而油藏地球物理阶段
丰富的多尺度地震资料为减小多解性, 提高分辨率提供了可能. 基于贝叶斯反演理论 …

[HTML][HTML] 库车坳陷复杂高陡构造地震成像研究

符力耘, 肖又军, 孙伟家, 吴超, 管西竹, 张敬洲 - 地球物理学报, 2013 - html.rhhz.net
复杂构造地震成像主要取决于叠前地震数据品质, 偏移速度可靠性和偏移算子成像精度.
库车坳陷异常复杂的近地表条件导致极低信噪比的地震采集数据. 该区逆冲推覆高陡构造刺穿盐 …