Existence of Ricci soliton vector fields on Vaidya spacetime

M Khatri, Z Chhakchhuak, LP Lalduhawma - Physica Scripta, 2023 - iopscience.iop.org
In this paper, we investigate the behaviour of the Vaidya spacetime admitting a Ricci soliton
vector field, where we have found the expressions for the four components of the vector field …

Conformal Ricci solitons on Vaidya spacetime

Z Chhakchhuak, JP Singh - General Relativity and Gravitation, 2024 - Springer
The present paper focused on Vaidya spacetime admitting a conformal Ricci soliton. We
derive the expressions for the four components of the associated vector field V and …

Almost Ricci–Yamabe solitons on almost Kenmotsu manifolds

M Khatri, JP Singh - Asian-European Journal of Mathematics, 2023 - World Scientific
This paper examines almost Kenmotsu manifolds (briefly, AKMs) endowed with the almost
Ricci–Yamabe solitons (ARYSs) and gradient ARYSs. The condition for an AKM with ARYS …

Classification of Quasi-Einstein Structure on Three-Dimensional Homogeneous Almost -Cosympletic Manifolds

M Khatri - Mediterranean Journal of Mathematics, 2024 - Springer
The purpose of the paper is to categorize quasi-Einstein structures on simply connected
three-dimensional homogeneous almost\(\alpha\)-cosympletic manifolds, where the Reeb …

Ricci–Bourguignon Soliton on Three-Dimensional Contact Metric Manifolds

M Khatri, JP Singh - Mediterranean Journal of Mathematics, 2024 - Springer
This paper aims to classify a certain type of three-dimensional complete non-Sasakian
contact manifold with specific properties, namely Q ξ= σ ξ and admitting Ricci–Bourguignon …

梯度Ricci-Yamabe 孤立子的一些刚性结果.

李云超, 刘建成 - Journal of Jilin University (Science Edition) …, 2024 - search.ebscohost.com
应用散度定理及一些Riemann 流形上的重要不等式, 并结合几何分析的方法研究紧致梯度Ricci-
Yamabe 孤立子的刚性问题, 在适当的条件下得到非平凡紧致梯度Ricci-Yamabe …

紧致黎曼流形中的梯度Ricci-Yamabe 孤立子

马彦芳 - Pure Mathematics, 2023 - hanspub.org
本文介绍了紧致黎曼流形M 中具有势函数f 的梯度Ricci-Yamabe 孤立子(M n, g, V, λ, α, β)
的相关结果, 其中, g 为黎曼流形M 上的黎曼度量, V 是黎曼流形上的向量场, λ∈ R 为黎曼流形M …

[PDF][PDF] Conformal Ricci-Yamabe solitons on warped product manifolds

JP Singha, R Sumlalsangab - Filomat, 2024 - pmf.ni.ac.rs
Self-similar solutions of the conformal Ricci-Yamabe flow equation are called conformal
Ricci-Yamabe solitons. This paper mainly concerned with the study of conformal Ricci …

[PDF][PDF] On almost generalized gradient Ricci-Yamabe soliton

BH Kima, JH Choib, SD Leec - Filomat, 2024 - pmf.ni.ac.rs
In this paper, we study the geometric characterizations and classify of the Riemannian
manifold with generalized gradient Ricci-Yamabe soliton or almost generalized gradient …