State-of-the-art in artificial neural network applications: A survey

OI Abiodun, A Jantan, AE Omolara, KV Dada… - Heliyon, 2018 - cell.com
This is a survey of neural network applications in the real-world scenario. It provides a
taxonomy of artificial neural networks (ANNs) and furnish the reader with knowledge of …

Application of deep learning in food: a review

L Zhou, C Zhang, F Liu, Z Qiu… - Comprehensive reviews in …, 2019 - Wiley Online Library
Deep learning has been proved to be an advanced technology for big data analysis with a
large number of successful cases in image processing, speech recognition, object detection …

Vision-language models for vision tasks: A survey

J Zhang, J Huang, S Jin, S Lu - IEEE Transactions on Pattern …, 2024 - ieeexplore.ieee.org
Most visual recognition studies rely heavily on crowd-labelled data in deep neural networks
(DNNs) training, and they usually train a DNN for each single visual recognition task …

A survey on generative diffusion models

H Cao, C Tan, Z Gao, Y Xu, G Chen… - IEEE Transactions on …, 2024 - ieeexplore.ieee.org
Deep generative models have unlocked another profound realm of human creativity. By
capturing and generalizing patterns within data, we have entered the epoch of all …

Deep learning in the industrial internet of things: Potentials, challenges, and emerging applications

RA Khalil, N Saeed, M Masood, YM Fard… - IEEE Internet of …, 2021 - ieeexplore.ieee.org
Recent advances in the Internet of Things (IoT) are giving rise to a proliferation of
interconnected devices, allowing the use of various smart applications. The enormous …

Load forecasting techniques for power system: Research challenges and survey

N Ahmad, Y Ghadi, M Adnan, M Ali - IEEE Access, 2022 - ieeexplore.ieee.org
The main and pivot part of electric companies is the load forecasting. Decision-makers and
think tank of power sectors should forecast the future need of electricity with large accuracy …

Evaluating the robustness of neural networks: An extreme value theory approach

TW Weng, H Zhang, PY Chen, J Yi, D Su, Y Gao… - arXiv preprint arXiv …, 2018 - arxiv.org
The robustness of neural networks to adversarial examples has received great attention due
to security implications. Despite various attack approaches to crafting visually imperceptible …

Quantum machine learning for chemistry and physics

M Sajjan, J Li, R Selvarajan, SH Sureshbabu… - Chemical Society …, 2022 - pubs.rsc.org
Machine learning (ML) has emerged as a formidable force for identifying hidden but
pertinent patterns within a given data set with the objective of subsequent generation of …

Neuromorphic computing hardware and neural architectures for robotics

Y Sandamirskaya, M Kaboli, J Conradt, T Celikel - Science Robotics, 2022 - science.org
Neuromorphic hardware enables fast and power-efficient neural network–based artificial
intelligence that is well suited to solving robotic tasks. Neuromorphic algorithms can be …

Advanced applications of industrial robotics: New trends and possibilities

A Dzedzickis, J Subačiūtė-Žemaitienė, E Šutinys… - Applied Sciences, 2021 - mdpi.com
This review is dedicated to the advanced applications of robotic technologies in the
industrial field. Robotic solutions in areas with non-intensive applications are presented, and …