AA Borisenko - Mathematics of the USSR-Sbornik, 1977 - iopscience.iop.org
This article studies complete-dimensional surfaces of nonpositive extrinsic 2-dimensional sectional curvature and nonpositive-dimensional curvature (for even) in Euclidean space, in …
AA Borisenko - Mathematics of the USSR-Sbornik, 1983 - iopscience.iop.org
This paper investigates the metric structure of compact-parabolic surfaces and topological properties of-saddle surfaces in the sense of Šefel'in symmetric spaces of rank one, namely …
AA Borisenko, AL Yampol'skiĭ - Mathematics of the USSR-Sbornik, 1989 - iopscience.iop.org
On the normal bundle of a submanifold in a Riemannian space a natural Riemannian metric is introduced. The structure of surfaces with strongly parabolic normal bundle metric is …
AA Borisenko - Mathematics of the USSR-Sbornik, 1988 - iopscience.iop.org
The structure of parabolic surfaces in a Riemannian space is studied. Conditions are determined for compact parabolic surfaces to be totally geodesic. The proof uses the normal …
AA Borisenko - Journal of Soviet Mathematics, 1991 - Springer
We study complete, strongly parabolic metrics with constant relative index of nullity μ c= k and complete, strongly parabolic surfaces with constant index of relative nullity v= k in a …
VY Rovenskii - Journal of Soviet Mathematics, 1990 - Springer
We prove a theorem on ruled surfaces that generalizes a theorem of Ferus on totally geodesic foliations. On the basis of this theorem we obtain criteria for totally geodesic …
AA Borisenko - Mathematics of the USSR-Sbornik, 1982 - iopscience.iop.org
This paper investigates surfaces of nonpositive extrinsic curvature in a pseudo-Riemannian space of curvature 1, Kählerian submanifolds of complex projective space, and saddle …
AA Borisenko - Russian Mathematical Surveys, 1998 - iopscience.iop.org
Abstract Contents Introduction § 1. Parabolic submanifolds 1.1. Point structure of the space of second fundamental forms of a k-parabolic surface 1.2. Normal bundle of a manifold 1.3 …
Гладкая поверхность F2 в S3 однозначно проектируется на большую сферу S02, если касательные большие сферы к F2 не проходят через по лярные к S02 точки 01? 02 …