Safe learning in robotics: From learning-based control to safe reinforcement learning

L Brunke, M Greeff, AW Hall, Z Yuan… - Annual Review of …, 2022 - annualreviews.org
The last half decade has seen a steep rise in the number of contributions on safe learning
methods for real-world robotic deployments from both the control and reinforcement learning …

Deep reinforcement learning in smart manufacturing: A review and prospects

C Li, P Zheng, Y Yin, B Wang, L Wang - CIRP Journal of Manufacturing …, 2023 - Elsevier
To facilitate the personalized smart manufacturing paradigm with cognitive automation
capabilities, Deep Reinforcement Learning (DRL) has attracted ever-increasing attention by …

Open problems and fundamental limitations of reinforcement learning from human feedback

S Casper, X Davies, C Shi, TK Gilbert… - arXiv preprint arXiv …, 2023 - arxiv.org
Reinforcement learning from human feedback (RLHF) is a technique for training AI systems
to align with human goals. RLHF has emerged as the central method used to finetune state …

How to train your robot with deep reinforcement learning: lessons we have learned

J Ibarz, J Tan, C Finn, M Kalakrishnan… - … Journal of Robotics …, 2021 - journals.sagepub.com
Deep reinforcement learning (RL) has emerged as a promising approach for autonomously
acquiring complex behaviors from low-level sensor observations. Although a large portion of …

The safety filter: A unified view of safety-critical control in autonomous systems

KC Hsu, H Hu, JF Fisac - Annual Review of Control, Robotics …, 2023 - annualreviews.org
Recent years have seen significant progress in the realm of robot autonomy, accompanied
by the expanding reach of robotic technologies. However, the emergence of new …

Recovery rl: Safe reinforcement learning with learned recovery zones

B Thananjeyan, A Balakrishna, S Nair… - IEEE Robotics and …, 2021 - ieeexplore.ieee.org
Safety remains a central obstacle preventing widespread use of RL in the real world:
learning new tasks in uncertain environments requires extensive exploration, but safety …

Conservative safety critics for exploration

H Bharadhwaj, A Kumar, N Rhinehart, S Levine… - arXiv preprint arXiv …, 2020 - arxiv.org
Safe exploration presents a major challenge in reinforcement learning (RL): when active
data collection requires deploying partially trained policies, we must ensure that these …

Deep reinforcement learning based energy management strategies for electrified vehicles: Recent advances and perspectives

H He, X Meng, Y Wang, A Khajepour, X An… - … and Sustainable Energy …, 2024 - Elsevier
Electrified vehicles provide an effective solution to address the unfavorable impacts of fossil
fuel use in the transportation sector. Energy management strategy (EMS) is the core …

Safe reinforcement learning by imagining the near future

G Thomas, Y Luo, T Ma - Advances in Neural Information …, 2021 - proceedings.neurips.cc
Safe reinforcement learning is a promising path toward applying reinforcement learning
algorithms to real-world problems, where suboptimal behaviors may lead to actual negative …

Trustworthy reinforcement learning against intrinsic vulnerabilities: Robustness, safety, and generalizability

M Xu, Z Liu, P Huang, W Ding, Z Cen, B Li… - arXiv preprint arXiv …, 2022 - arxiv.org
A trustworthy reinforcement learning algorithm should be competent in solving challenging
real-world problems, including {robustly} handling uncertainties, satisfying {safety} …