Opportunities and challenges in developing deep learning models using electronic health records data: a systematic review

C Xiao, E Choi, J Sun - Journal of the American Medical …, 2018 - academic.oup.com
Objective To conduct a systematic review of deep learning models for electronic health
record (EHR) data, and illustrate various deep learning architectures for analyzing different …

EEG-based brain-computer interfaces (BCIs): A survey of recent studies on signal sensing technologies and computational intelligence approaches and their …

X Gu, Z Cao, A Jolfaei, P Xu, D Wu… - … /ACM transactions on …, 2021 - ieeexplore.ieee.org
Brain-Computer interfaces (BCIs) enhance the capability of human brain activities to interact
with the environment. Recent advancements in technology and machine learning algorithms …

SleepEEGNet: Automated sleep stage scoring with sequence to sequence deep learning approach

S Mousavi, F Afghah, UR Acharya - PloS one, 2019 - journals.plos.org
Electroencephalogram (EEG) is a common base signal used to monitor brain activities and
diagnose sleep disorders. Manual sleep stage scoring is a time-consuming task for sleep …

XSleepNet: Multi-view sequential model for automatic sleep staging

H Phan, OY Chén, MC Tran, P Koch… - … on Pattern Analysis …, 2021 - ieeexplore.ieee.org
Automating sleep staging is vital to scale up sleep assessment and diagnosis to serve
millions experiencing sleep deprivation and disorders and enable longitudinal sleep …

A deep learning architecture for temporal sleep stage classification using multivariate and multimodal time series

S Chambon, MN Galtier, PJ Arnal… - … on Neural Systems …, 2018 - ieeexplore.ieee.org
Sleep stage classification constitutes an important preliminary exam in the diagnosis of
sleep disorders. It is traditionally performed by a sleep expert who assigns to each 30 s of …

The future of sleep health: a data-driven revolution in sleep science and medicine

I Perez-Pozuelo, B Zhai, J Palotti, R Mall… - NPJ digital …, 2020 - nature.com
In recent years, there has been a significant expansion in the development and use of multi-
modal sensors and technologies to monitor physical activity, sleep and circadian rhythms …

U-time: A fully convolutional network for time series segmentation applied to sleep staging

M Perslev, M Jensen, S Darkner… - Advances in Neural …, 2019 - proceedings.neurips.cc
Neural networks are becoming more and more popular for the analysis of physiological time-
series. The most successful deep learning systems in this domain combine convolutional …

The Dreem Headband compared to polysomnography for electroencephalographic signal acquisition and sleep staging

PJ Arnal, V Thorey, E Debellemaniere, ME Ballard… - Sleep, 2020 - academic.oup.com
Abstract Study Objectives The development of ambulatory technologies capable of
monitoring brain activity during sleep longitudinally is critical for advancing sleep science …

Automated sleep scoring: A review of the latest approaches

L Fiorillo, A Puiatti, M Papandrea, PL Ratti… - Sleep medicine …, 2019 - Elsevier
Clinical sleep scoring involves a tedious visual review of overnight polysomnograms by a
human expert, according to official standards. It could appear then a suitable task for modern …

[HTML][HTML] Machine-learning-based diagnostics of EEG pathology

LAW Gemein, RT Schirrmeister, P Chrabąszcz… - NeuroImage, 2020 - Elsevier
Abstract Machine learning (ML) methods have the potential to automate clinical EEG
analysis. They can be categorized into feature-based (with handcrafted features), and end-to …