Scaffold fabrication technologies and structure/function properties in bone tissue engineering

MN Collins, G Ren, K Young, S Pina… - Advanced functional …, 2021 - Wiley Online Library
Bone tissue engineering (BTE) is a rapidly growing field aiming to create a biofunctional
tissue that can integrate and degrade in vivo to treat diseased or damaged tissue. It has …

Design, printing, and engineering of regenerative biomaterials for personalized bone healthcare

Z Jia, X Xu, D Zhu, Y Zheng - Progress in Materials Science, 2023 - Elsevier
Trauma-and disease-related skeletal defects and illnesses are plaguing millions of people
especially in an ageing globe. Recently, the convergence of additive manufacturing (AM) …

Crosslinking strategies for 3D bioprinting of polymeric hydrogels

A GhavamiNejad, N Ashammakhi, XY Wu… - Small, 2020 - Wiley Online Library
Abstract Three‐dimensional (3D) bioprinting has recently advanced as an important tool to
produce viable constructs that can be used for regenerative purposes or as tissue models …

Recent progress in extrusion 3D bioprinting of hydrogel biomaterials for tissue regeneration: a comprehensive review with focus on advanced fabrication techniques

M Askari, MA Naniz, M Kouhi, A Saberi… - Biomaterials …, 2021 - pubs.rsc.org
Over the last decade, 3D bioprinting has received immense attention from research
communities for developing functional tissues. Thanks to the complexity of tissues, various …

3D bioprinted scaffolds for bone tissue engineering: State-of-the-art and emerging technologies

Z Yazdanpanah, JD Johnston, DML Cooper… - … in bioengineering and …, 2022 - frontiersin.org
Treating large bone defects, known as critical-sized defects (CSDs), is challenging because
they are not spontaneously healed by the patient's body. Due to the limitations associated …

3D bioprinting: current status and trends—a guide to the literature and industrial practice

S Santoni, SG Gugliandolo, M Sponchioni… - Bio-Design and …, 2022 - Springer
The multidisciplinary research field of bioprinting combines additive manufacturing, biology
and material sciences to create bioconstructs with three-dimensional architectures …

[HTML][HTML] Polymeric biomaterials for 3D printing in medicine: An overview

R Pugliese, B Beltrami, S Regondi, C Lunetta - Annals of 3D Printed …, 2021 - Elsevier
Abstract Three-dimensional (3D) printing is becoming a booming technology to fabricate
scaffolds, orthoses, and prosthetic devices for tissue engineering, regenerative medicine …

3D printing for bone repair: Coupling infection therapy and defect regeneration

J Chen, H Zhou, Y Fan, G Gao, Y Ying, J Li - Chemical Engineering Journal, 2023 - Elsevier
The treatment of infected bone defects is a major clinical challenge, which requires the
development of scaffolds to simultaneously eliminate infection and provide a suitable …

Highlights on advancing frontiers in tissue engineering

N Ashammakhi, A GhavamiNejad, R Tutar… - … Engineering Part B …, 2022 - liebertpub.com
The field of tissue engineering continues to advance, sometimes in exponential leaps
forward, but also sometimes at a rate that does not fulfill the promise that the field imagined a …

Extrusion and microfluidic‐based bioprinting to fabricate biomimetic tissues and organs

E Davoodi, E Sarikhani, H Montazerian… - Advanced materials …, 2020 - Wiley Online Library
Next generation engineered tissue constructs with complex and ordered architectures aim to
better mimic the native tissue structures, largely due to advances in 3D bioprinting …