Sensor-based and vision-based human activity recognition: A comprehensive survey

LM Dang, K Min, H Wang, MJ Piran, CH Lee, H Moon - Pattern Recognition, 2020 - Elsevier
Human activity recognition (HAR) technology that analyzes data acquired from various types
of sensing devices, including vision sensors and embedded sensors, has motivated the …

Deep learning for sensor-based human activity recognition: Overview, challenges, and opportunities

K Chen, D Zhang, L Yao, B Guo, Z Yu… - ACM Computing Surveys …, 2021 - dl.acm.org
The vast proliferation of sensor devices and Internet of Things enables the applications of
sensor-based activity recognition. However, there exist substantial challenges that could …

LSTM-CNN architecture for human activity recognition

K Xia, J Huang, H Wang - IEEE Access, 2020 - ieeexplore.ieee.org
In the past years, traditional pattern recognition methods have made great progress.
However, these methods rely heavily on manual feature extraction, which may hinder the …

Deep learning models for real-time human activity recognition with smartphones

S Wan, L Qi, X Xu, C Tong, Z Gu - mobile networks and applications, 2020 - Springer
With the widespread application of mobile edge computing (MEC), MEC is serving as a
bridge to narrow the gaps between medical staff and patients. Relatedly, MEC is also …

Wearable sensor-based human activity recognition with transformer model

I Dirgová Luptáková, M Kubovčík, J Pospíchal - Sensors, 2022 - mdpi.com
Computing devices that can recognize various human activities or movements can be used
to assist people in healthcare, sports, or human–robot interaction. Readily available data for …

Human activity recognition using inertial, physiological and environmental sensors: A comprehensive survey

F Demrozi, G Pravadelli, A Bihorac, P Rashidi - IEEE access, 2020 - ieeexplore.ieee.org
In the last decade, Human Activity Recognition (HAR) has become a vibrant research area,
especially due to the spread of electronic devices such as smartphones, smartwatches and …

A cybertwin based multimodal network for ecg patterns monitoring using deep learning

W Qi, H Su - IEEE Transactions on Industrial Informatics, 2022 - ieeexplore.ieee.org
In next-generation network architecture, the Cybertwin drove the sixth generation of cellular
networks sixth-generation (6G) to play an active role in many applications, such as …

A survey on wearable sensor modality centred human activity recognition in health care

Y Wang, S Cang, H Yu - Expert Systems with Applications, 2019 - Elsevier
Increased life expectancy coupled with declining birth rates is leading to an aging
population structure. Aging-caused changes, such as physical or cognitive decline, could …

Assuring the machine learning lifecycle: Desiderata, methods, and challenges

R Ashmore, R Calinescu, C Paterson - ACM Computing Surveys (CSUR), 2021 - dl.acm.org
Machine learning has evolved into an enabling technology for a wide range of highly
successful applications. The potential for this success to continue and accelerate has placed …

Densely knowledge-aware network for multivariate time series classification

Z Xiao, H Xing, R Qu, L Feng, S Luo… - … on Systems, Man …, 2024 - ieeexplore.ieee.org
Multivariate time series classification (MTSC) based on deep learning (DL) has attracted
increasingly more research attention. The performance of a DL-based MTSC algorithm is …