Advances in adversarial attacks and defenses in computer vision: A survey

N Akhtar, A Mian, N Kardan, M Shah - IEEE Access, 2021 - ieeexplore.ieee.org
Deep Learning is the most widely used tool in the contemporary field of computer vision. Its
ability to accurately solve complex problems is employed in vision research to learn deep …

Machine learning in cybersecurity: a comprehensive survey

D Dasgupta, Z Akhtar, S Sen - The Journal of Defense …, 2022 - journals.sagepub.com
Today's world is highly network interconnected owing to the pervasiveness of small personal
devices (eg, smartphones) as well as large computing devices or services (eg, cloud …

Robustbench: a standardized adversarial robustness benchmark

F Croce, M Andriushchenko, V Sehwag… - arXiv preprint arXiv …, 2020 - arxiv.org
As a research community, we are still lacking a systematic understanding of the progress on
adversarial robustness which often makes it hard to identify the most promising ideas in …

Gmmseg: Gaussian mixture based generative semantic segmentation models

C Liang, W Wang, J Miao… - Advances in Neural …, 2022 - proceedings.neurips.cc
Prevalent semantic segmentation solutions are, in essence, a dense discriminative classifier
of p (class| pixel feature). Though straightforward, this de facto paradigm neglects the …

On adaptive attacks to adversarial example defenses

F Tramer, N Carlini, W Brendel… - Advances in neural …, 2020 - proceedings.neurips.cc
Adaptive attacks have (rightfully) become the de facto standard for evaluating defenses to
adversarial examples. We find, however, that typical adaptive evaluations are incomplete …

Your classifier is secretly an energy based model and you should treat it like one

W Grathwohl, KC Wang, JH Jacobsen… - arXiv preprint arXiv …, 2019 - arxiv.org
We propose to reinterpret a standard discriminative classifier of p (y| x) as an energy based
model for the joint distribution p (x, y). In this setting, the standard class probabilities can be …

Threat of adversarial attacks on deep learning in computer vision: A survey

N Akhtar, A Mian - Ieee Access, 2018 - ieeexplore.ieee.org
Deep learning is at the heart of the current rise of artificial intelligence. In the field of
computer vision, it has become the workhorse for applications ranging from self-driving cars …

[HTML][HTML] A wholistic view of continual learning with deep neural networks: Forgotten lessons and the bridge to active and open world learning

M Mundt, Y Hong, I Pliushch, V Ramesh - Neural Networks, 2023 - Elsevier
Current deep learning methods are regarded as favorable if they empirically perform well on
dedicated test sets. This mentality is seamlessly reflected in the resurfacing area of continual …

Anomalous example detection in deep learning: A survey

S Bulusu, B Kailkhura, B Li, PK Varshney… - IEEE Access, 2020 - ieeexplore.ieee.org
Deep Learning (DL) is vulnerable to out-of-distribution and adversarial examples resulting in
incorrect outputs. To make DL more robust, several posthoc (or runtime) anomaly detection …

Meta gradient adversarial attack

Z Yuan, J Zhang, Y Jia, C Tan… - Proceedings of the …, 2021 - openaccess.thecvf.com
In recent years, research on adversarial attacks has become a hot spot. Although current
literature on the transfer-based adversarial attack has achieved promising results for …