[HTML][HTML] State of the art in selection of variables and functional forms in multivariable analysis—outstanding issues

W Sauerbrei, A Perperoglou, M Schmid… - … and prognostic research, 2020 - Springer
Background How to select variables and identify functional forms for continuous variables is
a key concern when creating a multivariable model. Ad hoc 'traditional'approaches to …

[HTML][HTML] A selective review of group selection in high-dimensional models

J Huang, P Breheny, S Ma - Statistical science: a review journal of …, 2012 - ncbi.nlm.nih.gov
Grouping structures arise naturally in many statistical modeling problems. Several methods
have been proposed for variable selection that respect grouping structure in variables …

Interpretable machine learning: Fundamental principles and 10 grand challenges

C Rudin, C Chen, Z Chen, H Huang… - Statistic …, 2022 - projecteuclid.org
Interpretability in machine learning (ML) is crucial for high stakes decisions and
troubleshooting. In this work, we provide fundamental principles for interpretable ML, and …

Diffusion models are minimax optimal distribution estimators

K Oko, S Akiyama, T Suzuki - International Conference on …, 2023 - proceedings.mlr.press
While efficient distribution learning is no doubt behind the groundbreaking success of
diffusion modeling, its theoretical guarantees are quite limited. In this paper, we provide the …

Statistical learning with sparsity

T Hastie, R Tibshirani… - Monographs on statistics …, 2015 - api.taylorfrancis.com
In this monograph, we have attempted to summarize the actively developing field of
statistical learning with sparsity. A sparse statistical model is one having only a small …

Adaptivity of deep ReLU network for learning in Besov and mixed smooth Besov spaces: optimal rate and curse of dimensionality

T Suzuki - arXiv preprint arXiv:1810.08033, 2018 - arxiv.org
Deep learning has shown high performances in various types of tasks from visual
recognition to natural language processing, which indicates superior flexibility and adaptivity …

[图书][B] Basics and trends in sensitivity analysis: Theory and practice in R

In many fields, such as environmental risk assessment, agronomic system behavior,
aerospace engineering, and nuclear safety, mathematical models turned into computer code …

[图书][B] Statistical foundations of data science

J Fan, R Li, CH Zhang, H Zou - 2020 - taylorfrancis.com
Statistical Foundations of Data Science gives a thorough introduction to commonly used
statistical models, contemporary statistical machine learning techniques and algorithms …

A Unified Framework for High-Dimensional Analysis of -Estimators with Decomposable Regularizers

SN Negahban, P Ravikumar, MJ Wainwright, B Yu - 2012 - projecteuclid.org
A Unified Framework for High-Dimensional Analysis of M-Estimators with Decomposable
Regularizers Page 1 Statistical Science 2012, Vol. 27, No. 4, 538–557 DOI: 10.1214/12-STS400 …

Springer series in statistics

P Bickel, P Diggle, S Fienberg, U Gather, I Olkin… - Principles and Theory …, 2009 - Springer
The idea for this book came from the time the authors spent at the Statistics and Applied
Mathematical Sciences Institute (SAMSI) in Research Triangle Park in North Carolina …