Counterfactual explanations and how to find them: literature review and benchmarking

R Guidotti - Data Mining and Knowledge Discovery, 2024 - Springer
Interpretable machine learning aims at unveiling the reasons behind predictions returned by
uninterpretable classifiers. One of the most valuable types of explanation consists of …

From anecdotal evidence to quantitative evaluation methods: A systematic review on evaluating explainable ai

M Nauta, J Trienes, S Pathak, E Nguyen… - ACM Computing …, 2023 - dl.acm.org
The rising popularity of explainable artificial intelligence (XAI) to understand high-performing
black boxes raised the question of how to evaluate explanations of machine learning (ML) …

Interpretable machine learning: Fundamental principles and 10 grand challenges

C Rudin, C Chen, Z Chen, H Huang… - Statistic …, 2022 - projecteuclid.org
Interpretability in machine learning (ML) is crucial for high stakes decisions and
troubleshooting. In this work, we provide fundamental principles for interpretable ML, and …

[HTML][HTML] Notions of explainability and evaluation approaches for explainable artificial intelligence

G Vilone, L Longo - Information Fusion, 2021 - Elsevier
Abstract Explainable Artificial Intelligence (XAI) has experienced a significant growth over
the last few years. This is due to the widespread application of machine learning, particularly …

A survey of algorithmic recourse: contrastive explanations and consequential recommendations

AH Karimi, G Barthe, B Schölkopf, I Valera - ACM Computing Surveys, 2022 - dl.acm.org
Machine learning is increasingly used to inform decision making in sensitive situations
where decisions have consequential effects on individuals' lives. In these settings, in …

Interpretable machine learning–a brief history, state-of-the-art and challenges

C Molnar, G Casalicchio, B Bischl - Joint European conference on …, 2020 - Springer
We present a brief history of the field of interpretable machine learning (IML), give an
overview of state-of-the-art interpretation methods and discuss challenges. Research in IML …

[PDF][PDF] Counterfactual explanations for machine learning: A review

S Verma, J Dickerson, K Hines - arXiv preprint arXiv …, 2020 - ml-retrospectives.github.io
Abstract Machine learning plays a role in many deployed decision systems, often in ways
that are difficult or impossible to understand by human stakeholders. Explaining, in a human …

Drug discovery with explainable artificial intelligence

J Jiménez-Luna, F Grisoni, G Schneider - Nature Machine Intelligence, 2020 - nature.com
Deep learning bears promise for drug discovery, including advanced image analysis,
prediction of molecular structure and function, and automated generation of innovative …

A survey of contrastive and counterfactual explanation generation methods for explainable artificial intelligence

I Stepin, JM Alonso, A Catala, M Pereira-Fariña - IEEE Access, 2021 - ieeexplore.ieee.org
A number of algorithms in the field of artificial intelligence offer poorly interpretable
decisions. To disclose the reasoning behind such algorithms, their output can be explained …

Visual recognition with deep nearest centroids

W Wang, C Han, T Zhou, D Liu - arXiv preprint arXiv:2209.07383, 2022 - arxiv.org
We devise deep nearest centroids (DNC), a conceptually elegant yet surprisingly effective
network for large-scale visual recognition, by revisiting Nearest Centroids, one of the most …