The mathematization of all sciences, the fading of traditional scientific boundaries, the impact of computer technology, the growing importance of computer modelling and the …
A Ern, T Gudi, I Smears… - IMA Journal of Numerical …, 2022 - academic.oup.com
Given an arbitrary function in, we show that the error attained by the global-best approximation by-conforming piecewise polynomial Raviart–Thomas–Nédélec elements …
DA Di Pietro, J Droniou, JJ Qian - Computer Methods in Applied Mechanics …, 2024 - Elsevier
In this work we design and analyse a Discrete de Rham (DDR) method for the incompressible Navier–Stokes equations. Our focus is, more specifically, on the SDDR …
Q Hong, Y Li, J Xu - Mathematics of Computation, 2022 - ams.org
For the Hodge–Laplace equation in finite element exterior calculus, we introduce several families of discontinuous Galerkin methods in the extended Galerkin framework. For …
A Abdulle, S Lemaire - ESAIM: Mathematical Modelling and …, 2024 - esaim-m2an.org
We study the numerical approximation of sign-shifting problems of elliptic type. We fully analyze and assess the method briefly introduced in [A. Abdulle, ME Huber and S. Lemaire …
We present an abstract framework for the eigenvalue approximation of a class of non- coercive operators. We provide sufficient conditions to guarantee the spectral correctness of …
RB Adhikari, I Kim, YJ Lee… - Numerical Methods for …, 2024 - Wiley Online Library
We present an efficient numerical method to approximate the flux variable for the Darcy flow model. An important feature of our new method is that the approximate solution for the flux …
We address fundamental aspects in the approximation theory of vector-valued finite element methods, using finite element exterior calculus as a unifying framework. We generalize the …
We develop commuting finite element projections over smooth Riemannian manifolds. This extension of finite element exterior calculus establishes the stability and convergence of …