[HTML][HTML] Regularity of powers of quadratic sequences with applications to binomial ideals

AV Jayanthan, A Kumar, R Sarkar - Journal of Algebra, 2020 - Elsevier
In this article, we obtain an upper bound for the Castelnuovo-Mumford regularity of powers
of an ideal generated by a homogeneous quadratic sequence in a polynomial ring in terms …

Depth and extremal Betti number of binomial edge ideals

A Kumar, R Sarkar - Mathematische Nachrichten, 2020 - Wiley Online Library
Let G be a simple graph on the vertex set [n] and let JG be the corresponding binomial edge
ideal. Let G= v∗ H be the cone of v on H. In this article, we compute all the Betti numbers of …

Local cohomology of binomial edge ideals and their generic initial ideals

J Àlvarez Montaner - Collectanea mathematica, 2020 - Springer
We provide a Hochster type formula for the local cohomology modules of binomial edge
ideals. As a consequence we obtain a simple criterion for the Cohen–Macaulayness and …

Binomial edge ideals and bounds for their regularity

A Kumar - Journal of Algebraic Combinatorics, 2021 - Springer
Let G be a simple graph on n vertices and J_G JG denote the corresponding binomial edge
ideal in S= K x_1, ..., x_n, y_1, ..., y_n. S= K x 1,…, xn, y 1,…, yn. We prove that the …

Regularity of powers of d-sequence (parity) binomial edge ideals of unicycle graphs

M Amalore Nambi, N Kumar - Communications in Algebra, 2024 - Taylor & Francis
We classify all unicycle graphs whose edge-binomials form ad-sequence, particularly linear
type binomial edge ideals. We also classify unicycle graphs whose parity edge-binomials …

Extremal Betti numbers of some Cohen–Macaulay binomial edge ideals

C Mascia, G Rinaldo - Algebra Colloquium, 2021 - World Scientific
We provide the regularity and the Cohen–Macaulay type of binomial edge ideals of Cohen–
Macaulay cones, and we show the extremal Betti numbers of some classes of Cohen …

Binomial edge ideals of unicyclic graphs

R Sarkar - International Journal of Algebra and Computation, 2021 - World Scientific
Let G be a connected graph on the vertex set [n]. Then depth (S/JG)≤ n+ 1. In this paper, we
prove that if G is a unicyclic graph, then the depth of S/JG is bounded below by n. Also, we …

[PDF][PDF] An upper bound for the regularity of binomial edge ideals of trees

AV Jayanthan, N Narayanan, BV Rao - arXiv preprint arXiv:1808.06374, 2018 - arxiv.org
arXiv:1808.06374v1 [math.AC] 20 Aug 2018 Page 1 arXiv:1808.06374v1 [math.AC] 20 Aug
2018 AN UPPER BOUND FOR THE REGULARITY OF BINOMIAL EDGE IDEALS OF …

[PDF][PDF] Recent results on homological properties of binomial edge ideal of graphs

P Das - arXiv preprint arXiv:2209.01201, 2022 - arxiv.org
arXiv:2209.01201v3 [math.AC] 13 Jul 2023 Page 1 arXiv:2209.01201v3 [math.AC] 13 Jul 2023
RECENT RESULTS ON HOMOLOGICAL PROPERTIES OF BINOMIAL EDGE IDEAL OF …

Regularity of parity binomial edge ideals

A Kumar - Proceedings of the American Mathematical Society, 2021 - ams.org
Let $ G $ be a simple graph on $ n $ vertices and $\mathcal {I} _G $ denotes parity binomial
edge ideal of $ G $ in the polynomial ring $ S=\mathbb {K}[x_1,\ldots, x_n, y_1,\ldots, y_n] …