A Kumar, R Sarkar - Mathematische Nachrichten, 2020 - Wiley Online Library
Let G be a simple graph on the vertex set [n] and let JG be the corresponding binomial edge ideal. Let G= v∗ H be the cone of v on H. In this article, we compute all the Betti numbers of …
We provide a Hochster type formula for the local cohomology modules of binomial edge ideals. As a consequence we obtain a simple criterion for the Cohen–Macaulayness and …
A Kumar - Journal of Algebraic Combinatorics, 2021 - Springer
Let G be a simple graph on n vertices and J_G JG denote the corresponding binomial edge ideal in S= K x_1, ..., x_n, y_1, ..., y_n. S= K x 1,…, xn, y 1,…, yn. We prove that the …
M Amalore Nambi, N Kumar - Communications in Algebra, 2024 - Taylor & Francis
We classify all unicycle graphs whose edge-binomials form ad-sequence, particularly linear type binomial edge ideals. We also classify unicycle graphs whose parity edge-binomials …
We provide the regularity and the Cohen–Macaulay type of binomial edge ideals of Cohen– Macaulay cones, and we show the extremal Betti numbers of some classes of Cohen …
R Sarkar - International Journal of Algebra and Computation, 2021 - World Scientific
Let G be a connected graph on the vertex set [n]. Then depth (S/JG)≤ n+ 1. In this paper, we prove that if G is a unicyclic graph, then the depth of S/JG is bounded below by n. Also, we …
arXiv:1808.06374v1 [math.AC] 20 Aug 2018 Page 1 arXiv:1808.06374v1 [math.AC] 20 Aug 2018 AN UPPER BOUND FOR THE REGULARITY OF BINOMIAL EDGE IDEALS OF …
A Kumar - Proceedings of the American Mathematical Society, 2021 - ams.org
Let $ G $ be a simple graph on $ n $ vertices and $\mathcal {I} _G $ denotes parity binomial edge ideal of $ G $ in the polynomial ring $ S=\mathbb {K}[x_1,\ldots, x_n, y_1,\ldots, y_n] …