A virtual element method for the Steklov eigenvalue problem

D Mora, G Rivera, R Rodríguez - Mathematical Models and Methods …, 2015 - World Scientific
The aim of this paper is to develop a virtual element method for the two-dimensional Steklov
eigenvalue problem. We propose a discretization by means of the virtual elements …

A type of multilevel method for the Steklov eigenvalue problem

H Xie - IMA Journal of Numerical Analysis, 2014 - ieeexplore.ieee.org
A new type of iteration method is proposed in this paper to solve the Steklov eigenvalue
problem by the finite element method. In this scheme, solving the Steklov eigenvalue …

[HTML][HTML] A posteriori error estimates for a virtual element method for the Steklov eigenvalue problem

D Mora, G Rivera, R Rodríguez - Computers & Mathematics with …, 2017 - Elsevier
The paper deals with the a posteriori error analysis of a virtual element method for the
Steklov eigenvalue problem. The virtual element method has the advantage of using …

A posteriori error estimates for the Steklov eigenvalue problem

MG Armentano, C Padra - Applied Numerical Mathematics, 2008 - Elsevier
In this paper we introduce and analyze an a posteriori error estimator for the linear finite
element approximations of the Steklov eigenvalue problem. We define an error estimator of …

A priori and a posteriori error estimates for a virtual element method for the non-self-adjoint Steklov eigenvalue problem

G Wang, J Meng, Y Wang, L Mei - IMA Journal of Numerical …, 2022 - academic.oup.com
In this paper we analyze a virtual element method (VEM) for the non-self-adjoint Steklov
eigenvalue problem. The conforming VEM on polytopal meshes is used for discretization …

A virtual element method for the Steklov eigenvalue problem allowing small edges

F Lepe, D Mora, G Rivera, I Velásquez - Journal of Scientific Computing, 2021 - Springer
The aim of this paper is to analyze the influence of small edges in the computation of the
spectrum of the Steklov eigenvalue problem by a lowest order virtual element method …

Discontinuous Galerkin methods of the non-selfadjoint Steklov eigenvalue problem in inverse scattering

J Meng, L Mei - Applied Mathematics and Computation, 2020 - Elsevier
In this paper, we apply discontinuous Galerkin methods to the non-selfadjoint Steklov
eigenvalue problem arising in inverse scattering. The variational formulation of the problem …

Extrapolation and superconvergence of the Steklov eigenvalue problem

M Li, Q Lin, S Zhang - Advances in computational mathematics, 2010 - Springer
On the basis of a transform lemma, an asymptotic expansion of the bilinear finite element is
derived over graded meshes for the Steklov eigenvalue problem, such that the Richardson …

A two-grid discretization scheme for the Steklov eigenvalue problem

Q Li, Y Yang - Journal of Applied Mathematics and Computing, 2011 - Springer
In the paper, a two-grid discretization scheme is discussed for the Steklov eigenvalue
problem. With the scheme, the solution of the Steklov eigenvalue problem on a fine grid is …

[HTML][HTML] Two-grid discretizations and a local finite element scheme for a non-selfadjoint Stekloff eigenvalue problem

H Bi, Y Zhang, Y Yang - Computers & Mathematics with Applications, 2020 - Elsevier
In this paper, for a new Stekloff eigenvalue problem which is non-selfadjoint and not H 1-
elliptic, we establish and analyze two kinds of two-grid discretization scheme and a local …