Transfer learning for medical image classification: a literature review

HE Kim, A Cosa-Linan, N Santhanam, M Jannesari… - BMC medical …, 2022 - Springer
Background Transfer learning (TL) with convolutional neural networks aims to improve
performances on a new task by leveraging the knowledge of similar tasks learned in …

A comprehensive survey on test-time adaptation under distribution shifts

J Liang, R He, T Tan - International Journal of Computer Vision, 2024 - Springer
Abstract Machine learning methods strive to acquire a robust model during the training
process that can effectively generalize to test samples, even in the presence of distribution …

A survey on deep learning tools dealing with data scarcity: definitions, challenges, solutions, tips, and applications

L Alzubaidi, J Bai, A Al-Sabaawi, J Santamaría… - Journal of Big Data, 2023 - Springer
Data scarcity is a major challenge when training deep learning (DL) models. DL demands a
large amount of data to achieve exceptional performance. Unfortunately, many applications …

Datasetdm: Synthesizing data with perception annotations using diffusion models

W Wu, Y Zhao, H Chen, Y Gu, R Zhao… - Advances in …, 2023 - proceedings.neurips.cc
Current deep networks are very data-hungry and benefit from training on large-scale
datasets, which are often time-consuming to collect and annotate. By contrast, synthetic data …

[PDF][PDF] Deep unsupervised domain adaptation: A review of recent advances and perspectives

X Liu, C Yoo, F Xing, H Oh, G El Fakhri… - … on Signal and …, 2022 - nowpublishers.com
Deep learning has become the method of choice to tackle real-world problems in different
domains, partly because of its ability to learn from data and achieve impressive performance …

Test-time classifier adjustment module for model-agnostic domain generalization

Y Iwasawa, Y Matsuo - Advances in Neural Information …, 2021 - proceedings.neurips.cc
This paper presents a new algorithm for domain generalization (DG),\textit {test-time
template adjuster (T3A)}, aiming to robustify a model to unknown distribution shift. Unlike …

Domain adaptation for medical image analysis: a survey

H Guan, M Liu - IEEE Transactions on Biomedical Engineering, 2021 - ieeexplore.ieee.org
Machine learning techniques used in computer-aided medical image analysis usually suffer
from the domain shift problem caused by different distributions between source/reference …

Memo: Test time robustness via adaptation and augmentation

M Zhang, S Levine, C Finn - Advances in neural information …, 2022 - proceedings.neurips.cc
While deep neural networks can attain good accuracy on in-distribution test points, many
applications require robustness even in the face of unexpected perturbations in the input …

Cdtrans: Cross-domain transformer for unsupervised domain adaptation

T Xu, W Chen, P Wang, F Wang, H Li, R Jin - arXiv preprint arXiv …, 2021 - arxiv.org
Unsupervised domain adaptation (UDA) aims to transfer knowledge learned from a labeled
source domain to a different unlabeled target domain. Most existing UDA methods focus on …

Robust mean teacher for continual and gradual test-time adaptation

M Döbler, RA Marsden, B Yang - Proceedings of the IEEE …, 2023 - openaccess.thecvf.com
Since experiencing domain shifts during test-time is inevitable in practice, test-time adaption
(TTA) continues to adapt the model after deployment. Recently, the area of continual and …