On global deformation quantization in the algebraic case Page 1 Journal of Algebra 315 (2007) 326–395 www.elsevier.com/locate/jalgebra On global deformation quantization in the algebraic …
This book constitutes the extended version of lectures notes for an advanced course on algebraic stacks and moduli of vector bundles delivered by the author at the 27◦ Colóquio …
F Polizzi - Communications in Algebra®, 2008 - Taylor & Francis
A smooth algebraic surface S is said to be isogenous to a product of unmixed type if there exist two smooth curves C, F and a finite group G, acting faithfully on both C and F and freely …
An old theorem of Charney and Lee says that the classifying space of the category of stable nodal topological surfaces and isotopy classes of degenerations has the same rational …
B Collas, S Maugeais - Annales de l'Institut Fourier, 2015 - numdam.org
Dans cet article, nous caractérisons l'action du groupe de Galois absolu sur les groupes d'inertie champêtre géométriques cycliques et sans factorisation étale du groupe …
F Neumann - arXiv preprint arXiv:2405.17113, 2024 - arxiv.org
For a semisimple complex algebraic group $ G $ we determine the rational cohomology and the Hodge-Tate structure of the moduli stack ${\mathscr B} un_ {G, X} $ of principal $ G …
A Ghigi, C Tamborini - arXiv preprint arXiv:2204.07817, 2022 - arxiv.org
We describe a new construction of families of Galois coverings of the line using basic properties of configuration spaces, covering theory, and the Grauert-Remmert Extension …
PL del Angel Rodriguez… - New Tools in Mathematical …, 2024 - books.google.com
For a semisimple complex algebraic group G we determine the rational cohomology and the Hodge-Tate structure of the moduli stack Bung, x of principal G-bundles over a connected …
P Frediani, F Neumann - Journal of Homotopy and Related Structures, 2016 - Springer
Abstract We determine the Artin–Mazur étale homotopy types of moduli stacks of polarised abelian schemes using transcendental methods and derive some arithmetic properties of …