Graph signal processing: Overview, challenges, and applications

A Ortega, P Frossard, J Kovačević… - Proceedings of the …, 2018 - ieeexplore.ieee.org
Research in graph signal processing (GSP) aims to develop tools for processing data
defined on irregular graph domains. In this paper, we first provide an overview of core ideas …

Graph signal processing for machine learning: A review and new perspectives

X Dong, D Thanou, L Toni, M Bronstein… - IEEE Signal …, 2020 - ieeexplore.ieee.org
The effective representation, processing, analysis, and visualization of large-scale structured
data, especially those related to complex domains, such as networks and graphs, are one of …

Graph learning: A survey

F Xia, K Sun, S Yu, A Aziz, L Wan… - IEEE Transactions on …, 2021 - ieeexplore.ieee.org
Graphs are widely used as a popular representation of the network structure of connected
data. Graph data can be found in a broad spectrum of application domains such as social …

Towards unsupervised deep graph structure learning

Y Liu, Y Zheng, D Zhang, H Chen, H Peng… - Proceedings of the ACM …, 2022 - dl.acm.org
In recent years, graph neural networks (GNNs) have emerged as a successful tool in a
variety of graph-related applications. However, the performance of GNNs can be …

Iterative deep graph learning for graph neural networks: Better and robust node embeddings

Y Chen, L Wu, M Zaki - Advances in neural information …, 2020 - proceedings.neurips.cc
In this paper, we propose an end-to-end graph learning framework, namely\textbf {I}
terative\textbf {D} eep\textbf {G} raph\textbf {L} earning (\alg), for jointly and iteratively …

Connecting the dots: Identifying network structure via graph signal processing

G Mateos, S Segarra, AG Marques… - IEEE Signal Processing …, 2019 - ieeexplore.ieee.org
Network topology inference is a significant problem in network science. Most graph signal
processing (GSP) efforts to date assume that the underlying network is known and then …

Learning graphs from data: A signal representation perspective

X Dong, D Thanou, M Rabbat… - IEEE Signal Processing …, 2019 - ieeexplore.ieee.org
The construction of a meaningful graph topology plays a crucial role in the effective
representation, processing, analysis, and visualization of structured data. When a natural …

Graph condensation for graph neural networks

W Jin, L Zhao, S Zhang, Y Liu, J Tang… - arXiv preprint arXiv …, 2021 - arxiv.org
Given the prevalence of large-scale graphs in real-world applications, the storage and time
for training neural models have raised increasing concerns. To alleviate the concerns, we …

Graph spectral image processing

G Cheung, E Magli, Y Tanaka… - Proceedings of the IEEE, 2018 - ieeexplore.ieee.org
Recent advent of graph signal processing (GSP) has spurred intensive studies of signals
that live naturally on irregular data kernels described by graphs (eg, social networks …

Topology identification and learning over graphs: Accounting for nonlinearities and dynamics

GB Giannakis, Y Shen… - Proceedings of the …, 2018 - ieeexplore.ieee.org
Identifying graph topologies as well as processes evolving over graphs emerge in various
applications involving gene-regulatory, brain, power, and social networks, to name a few …