Optimization of Sparse Matrix Computation for Algebraic Multigrid on GPUs

Y Wang, F Chang, B Wei, J Gao, W Ji - ACM Transactions on Architecture …, 2024 - dl.acm.org
AMG is one of the most efficient and widely used methods for solving sparse linear systems.
The computational process of AMG mainly consists of a series of iterative calculations of …

[HTML][HTML] Configurable sparse matrix-matrix multiplication accelerator on FPGA: A systematic design space exploration approach with quantization effects

G Noble, S Nalesh, S Kala, A Kumar - Alexandria Engineering Journal, 2024 - Elsevier
High-performance sparse matrix multipliers are essential for deep learning applications, and
as big data analytics continues to evolve, specialized accelerators are also needed to …

Optimizing sparse general matrix–matrix multiplication for DCUs

H Guo, H Wang, W Chen, C Zhang, Y Han… - The Journal of …, 2024 - Springer
Sparse general matrix–matrix multiplication (SpGEMM) is a crucial and complex
computational task in many practical applications. Improving the performance of SpGEMM …

Generating Data Locality to Accelerate Sparse Matrix-Matrix Multiplication on CPUs

J Wolfson-Pou, J Laukemann, F Petrini - arXiv preprint arXiv:2501.07056, 2025 - arxiv.org
Sparse GEneral Matrix-matrix Multiplication (SpGEMM) is a critical operation in many
applications. Current multithreaded implementations are based on Gustavson's algorithm …

FLAASH: Flexible Accelerator Architecture for Sparse High-Order Tensor Contraction

G Kulp, A Ensinger, L Chen - arXiv preprint arXiv:2404.16317, 2024 - arxiv.org
Tensors play a vital role in machine learning (ML) and often exhibit properties best explored
while maintaining high-order. Efficiently performing ML computations requires taking …

Posudek oponenta závěrečné práce

M Šoch, BL Simulík - dspace.cvut.cz
Práce se zabývá paralelním násobením řídkých matic a obsahuje analýzu a porovnání
výkonu vlastního implementovaného algoritmu v OpenMP s existujícími algoritmy. Byly …