G Noble, S Nalesh, S Kala, A Kumar - Alexandria Engineering Journal, 2024 - Elsevier
High-performance sparse matrix multipliers are essential for deep learning applications, and as big data analytics continues to evolve, specialized accelerators are also needed to …
H Guo, H Wang, W Chen, C Zhang, Y Han… - The Journal of …, 2024 - Springer
Sparse general matrix–matrix multiplication (SpGEMM) is a crucial and complex computational task in many practical applications. Improving the performance of SpGEMM …
Sparse GEneral Matrix-matrix Multiplication (SpGEMM) is a critical operation in many applications. Current multithreaded implementations are based on Gustavson's algorithm …
G Kulp, A Ensinger, L Chen - arXiv preprint arXiv:2404.16317, 2024 - arxiv.org
Tensors play a vital role in machine learning (ML) and often exhibit properties best explored while maintaining high-order. Efficiently performing ML computations requires taking …
Práce se zabývá paralelním násobením řídkých matic a obsahuje analýzu a porovnání výkonu vlastního implementovaného algoritmu v OpenMP s existujícími algoritmy. Byly …