[HTML][HTML] Improving aircraft performance using machine learning: A review

S Le Clainche, E Ferrer, S Gibson, E Cross… - Aerospace Science and …, 2023 - Elsevier
This review covers the new developments in machine learning (ML) that are impacting the
multi-disciplinary area of aerospace engineering, including fundamental fluid dynamics …

Super-resolution analysis via machine learning: a survey for fluid flows

K Fukami, K Fukagata, K Taira - Theoretical and Computational Fluid …, 2023 - Springer
This paper surveys machine-learning-based super-resolution reconstruction for vortical
flows. Super resolution aims to find the high-resolution flow fields from low-resolution data …

[HTML][HTML] Super-resolution and denoising of fluid flow using physics-informed convolutional neural networks without high-resolution labels

H Gao, L Sun, JX Wang - Physics of Fluids, 2021 - pubs.aip.org
High-resolution (HR) information of fluid flows, although preferable, is usually less
accessible due to limited computational or experimental resources. In many cases, fluid data …

Machine-learning-based spatio-temporal super resolution reconstruction of turbulent flows

K Fukami, K Fukagata, K Taira - Journal of Fluid Mechanics, 2021 - cambridge.org
We present a new data reconstruction method with supervised machine learning techniques
inspired by super resolution and inbetweening to recover high-resolution turbulent flows …

[HTML][HTML] Towards extraction of orthogonal and parsimonious non-linear modes from turbulent flows

H Eivazi, S Le Clainche, S Hoyas, R Vinuesa - Expert Systems with …, 2022 - Elsevier
Modal-decomposition techniques are computational frameworks based on data aimed at
identifying a low-dimensional space for capturing dominant flow features: the so-called …

Convolutional neural network and long short-term memory based reduced order surrogate for minimal turbulent channel flow

T Nakamura, K Fukami, K Hasegawa, Y Nabae… - Physics of …, 2021 - pubs.aip.org
We investigate the applicability of the machine learning based reduced order model (ML-
ROM) to three-dimensional complex flows. As an example, we consider a turbulent channel …

Convolutional neural network based hierarchical autoencoder for nonlinear mode decomposition of fluid field data

K Fukami, T Nakamura, K Fukagata - Physics of Fluids, 2020 - pubs.aip.org
We propose a customized convolutional neural network based autoencoder called a
hierarchical autoencoder, which allows us to extract nonlinear autoencoder modes of flow …

[HTML][HTML] Physics guided machine learning using simplified theories

S Pawar, O San, B Aksoylu, A Rasheed… - Physics of Fluids, 2021 - pubs.aip.org
Recent applications of machine learning, in particular deep learning, motivate the need to
address the generalizability of the statistical inference approaches in physical sciences. In …

Super-resolution generative adversarial networks of randomly-seeded fields

A Güemes, C Sanmiguel Vila, S Discetti - Nature Machine Intelligence, 2022 - nature.com
Reconstruction of field quantities from sparse measurements is a problem arising in a broad
spectrum of applications. This task is particularly challenging when the mapping between …

CNN-LSTM based reduced order modeling of two-dimensional unsteady flows around a circular cylinder at different Reynolds numbers

K Hasegawa, K Fukami, T Murata… - Fluid Dynamics …, 2020 - iopscience.iop.org
We investigate the capability of machine learning (ML) based reduced order model (ML-
ROM) for two-dimensional unsteady flows around a circular cylinder at different Reynolds …