[图书][B] Sobolev, Besov and Triebel-Lizorkin spaces on quantum tori

X Xiong, Q Xu, Z Yin - 2018 - ams.org
This paper gives a systematic study of Sobolev, Besov and Triebel-Lizorkin spaces on a
noncommutative d-torus Td θ (with θ a skew symmetric real d× d-matrix). These spaces …

Nonmultipliers of the Sobolev spaces wk, 1 (Rn)

A Bonami, S Poornima - Journal of functional analysis, 1987 - Elsevier
While the class of multipliers of the Sobolev space W k, 1 (R n) is strictly larger than the
space of bounded measures for n> 1 [3], we show in this paper that it fails to contain certain …

Integral operators on Fock–Sobolev spaces via multipliers on Gauss–Sobolev spaces

BD Wick, S Wu - Integral Equations and Operator Theory, 2022 - Springer
In this paper, we obtain an isometry between the Fock–Sobolev space and the Gauss–
Sobolev space with the same order. As an application, we use multipliers on the Gauss …

Weak amenability of Segal algebras

H Dales, S Pandey - Proceedings of the American Mathematical Society, 2000 - ams.org
WEAK AMENABILITY OF SEGAL ALGEBRAS 1. Introduction Let A be an algebra, and let E be
an A-bimodule. Then a linear map D : A → Page 1 PROCEEDINGS OF THE AMERICAN …

Function spaces on quantum tori

X Xiong, Q Xu, Z Yin - Comptes …, 2015 - comptes-rendus.academie-sciences …
Munis de leur norme naturelle, ils sont tous des espaces de Banach. Les résultats obtenus
peuvent se classer en cinq familles:(i) propriétés fondamentales;(ii) caractérisations;(iii) …

Multiplication and convolution operators between spaces of distributions

P Dierolf - North-Holland Mathematics Studies, 1984 - Elsevier
Multiplication (convolution) operators between spaces of distributions are continuous linear
maps which on the subspace act as multiplication (convolution). In section one we fix our …

Weyl multipliers for invariant Sobelev spaces

R Radha, S Thangavelu - Proceedings Mathematical Sciences, 1998 - Springer
A concrete characterization for the LP-multipliers (1< p<∞) for the Weyl transform is
obtained. This is used to study the Weyl multipliers for Laguerre Sobolev spaces W m, p (ℂ …

Homogeneous Fourier and Weyl multipliers on Sobolev spaces related to the Heisenberg group

R Basak, R Garg, S Thangavelu - Journal of Functional Analysis, 2021 - Elsevier
Inspired by the work of A. Bonami and S. Poornima that a non-constant function which is
homogeneous of degree 0 cannot be a Fourier multiplier on homogeneous Sobolev spaces …

On the Sobolev spaces Wk,1(Rn)

S Poornima - Harmonic Analysis: Proceedings of a Conference Held …, 2006 - Springer
ON THE SOBOLEV SPACES Wk,1(Rnt S. POORNIMA For any non negative integer k and
any p, 1 $ P < 00, let W k, P(R n) denotetheSob Page 1 ON THE SOBOLEV SPACES Wk,1(Rnt …

[PDF][PDF] Fourier multipliers for Sobolev spaces on the Heisenberg group

S Jitendriya, R Radha, D Venku Naidu - Analysis Mathematica, 2010 - researchgate.net
In this paper, it is shown that the class of right Fourier multipliers for the Sobolev space Wk,
p(Hn) coincides with the class of right Fourier multipliers for Lp (Hn) for k∈ N, 1< p<∞ …