John Mather's seminal works in Hamiltonian dynamics represent some of the most important contributions to our understanding of the complex balance between stable and unstable …
C Viterbo - arXiv preprint arXiv:0801.0206, 2007 - arxiv.org
Let $ H (q, p) $ be a Hamiltonian on $ T^* T^ n $. We show that the sequence $ H_ {k}(q, p)= H (kq, p) $ converges for the $\gamma $ topology defined by the author, to $\bar {H}(p) …
S Sandon - Journal of Topology and Analysis, 2010 - World Scientific
In his article [23] on generating functions Viterbo constructed a bi-invariant metric on the group of compactly supported Hamiltonian symplectomorphisms of ℝ2n. Using the setup of …
A Sorrentino - arXiv preprint arXiv:1309.1008, 2013 - arxiv.org
This article is concerned with the study of Mather's\beta-function associated to Birkhoff billiards. This function corresponds to the minimal average action of orbits with a prescribed …
Dans une première partie, nous développerons la théorie de l'homogénéisation symplectique ainsi que ses applications à la théorie de Mather et à la rigidité symplectique …
A Birkhoff billiard is a system describing the inertial motion of a point mass inside a strictly convex planar domain, with elastic reflections at the boundary. The study of the associated …
On discute et clarifie quelques questions liées à la généralisation du théorème de Bernard sur l'invariance symplectique des ensembles d'Aubry, de Mather et de Mañé aux cas de …
A Monzner, F Zapolsky - Journal of Topology and Analysis, 2011 - World Scientific
A quasi-integral on a locally compact space is a certain kind of (not necessarily linear) functional on the space of continuous functions with compact support of that space. We …
A mathematical billiard is a system describing the inertial motion of a point mass inside a domain, with elastic reflections at the boundary. The study of the associated dynamics is …