Partial quasi-morphisms and quasi-states on cotangent bundles, and symplectic homogenization

A Monzner, N Vichery, F Zapolsky - arXiv preprint arXiv:1111.0287, 2011 - arxiv.org
For a closed connected manifold N, we construct a family of functions on the Hamiltonian
group G of the cotangent bundle T^* N, and a family of functions on the space of smooth …

[图书][B] Action-minimizing methods in Hamiltonian dynamics (MN-50): An introduction to Aubry-Mather theory

A Sorrentino - 2015 - books.google.com
John Mather's seminal works in Hamiltonian dynamics represent some of the most important
contributions to our understanding of the complex balance between stable and unstable …

Symplectic homogenization

C Viterbo - arXiv preprint arXiv:0801.0206, 2007 - arxiv.org
Let $ H (q, p) $ be a Hamiltonian on $ T^* T^ n $. We show that the sequence $ H_ {k}(q, p)=
H (kq, p) $ converges for the $\gamma $ topology defined by the author, to $\bar {H}(p) …

AN INTEGER-VALUED BI-INVARIANT METRIC ON THE GROUP OF CONTACTOMORPHISMS OF ℝ2n × S1

S Sandon - Journal of Topology and Analysis, 2010 - World Scientific
In his article [23] on generating functions Viterbo constructed a bi-invariant metric on the
group of compactly supported Hamiltonian symplectomorphisms of ℝ2n. Using the setup of …

Computing Mather's\beta-function for Birkhoff billiards

A Sorrentino - arXiv preprint arXiv:1309.1008, 2013 - arxiv.org
This article is concerned with the study of Mather's\beta-function associated to Birkhoff
billiards. This function corresponds to the minimal average action of orbits with a prescribed …

Homogénéisation symplectique et applications de la théorie des faisceaux à la topologie symplectique

N Vichery - 2012 - pastel.hal.science
Dans une première partie, nous développerons la théorie de l'homogénéisation
symplectique ainsi que ses applications à la théorie de Mather et à la rigidité symplectique …

Inverse problems and rigidity questions in billiard dynamics

V Kaloshin, A Sorrentino - Ergodic Theory and Dynamical Systems, 2022 - cambridge.org
A Birkhoff billiard is a system describing the inertial motion of a point mass inside a strictly
convex planar domain, with elastic reflections at the boundary. The study of the associated …

Remarks on the symplectic invariance of Aubry–Mather sets

M Mazzucchelli, A Sorrentino - Comptes Rendus. Mathématique, 2016 - numdam.org
On discute et clarifie quelques questions liées à la généralisation du théorème de Bernard
sur l'invariance symplectique des ensembles d'Aubry, de Mather et de Mañé aux cas de …

A comparison of symplectic homogenization and Calabi quasi-states

A Monzner, F Zapolsky - Journal of Topology and Analysis, 2011 - World Scientific
A quasi-integral on a locally compact space is a certain kind of (not necessarily linear)
functional on the space of continuous functions with compact support of that space. We …

Lecture Notes on Birkhoff Billiards: Dynamics, Integrability and Spectral Rigidity

C Fierobe, V Kaloshin, A Sorrentino - Modern Aspects of Dynamical …, 2024 - Springer
A mathematical billiard is a system describing the inertial motion of a point mass inside a
domain, with elastic reflections at the boundary. The study of the associated dynamics is …