European option pricing models described by fractional operators with classical and generalized Mittag‐Leffler kernels

M Yavuz - Numerical Methods for Partial Differential Equations, 2022 - Wiley Online Library
In this paper, we investigate novel solutions of fractional‐order option pricing models and
their fundamental mathematical analyses. The main novelties of the paper are the analysis …

New approaches to the fractional dynamics of schistosomiasis disease model

M Yavuz, E Bonyah - Physica A: Statistical Mechanics and its Applications, 2019 - Elsevier
In this paper, schistosomiasis fractional order dynamic model is examined via exponential
law kernel sense and Mittag-Leffler kernel in Liouville–Caputo sense. Some special …

An analytic study on the approximate solution of a nonlinear time‐fractional Cauchy reaction–diffusion equation with the Mittag–Leffler law

K Hosseini, M Ilie, M Mirzazadeh… - … Methods in the Applied …, 2021 - Wiley Online Library
The main aim of the current article is considering a nonlinear time‐fractional Cauchy
reaction–diffusion equation with the Mittag–Leffler law and deriving its approximate …

A fractional order optimal 4D chaotic financial model with Mittag-Leffler law

A Atangana, E Bonyah, AA Elsadany - Chinese Journal of Physics, 2020 - Elsevier
In this paper, a fractional 4D chaotic financial model with optimal control is investigated. The
fractional derivative used in this financial model is Atangana–Baleanu derivative. The …

On a reaction–diffusion model for calcium dynamics in neurons with Mittag–Leffler memory

H Joshi, BK Jha - The European Physical Journal Plus, 2021 - Springer
In recent times, the Atangana–Baleanu–Caputo (ABC) derivative is one of the robust
fractional operators to solve complex dynamical problems due to its nonlocal and non …

Time-fractional Caputo derivative versus other integrodifferential operators in generalized Fokker-Planck and generalized Langevin equations

Q Wei, W Wang, H Zhou, R Metzler, A Chechkin - Physical Review E, 2023 - APS
Fractional diffusion and Fokker-Planck equations are widely used tools to describe
anomalous diffusion in a large variety of complex systems. The equivalent formulations in …

Local generalization of transversality conditions for optimal control problem

BBİ Eroglu, D Yapişkan - Mathematical Modelling of Natural …, 2019 - mmnp-journal.org
In this paper, we introduce the transversality conditions of optimal control problems
formulated with the conformable derivative. Since the optimal control theory is based on …

Further studies on ordinary differential equations involving the M-fractional derivative

A Khoshkenar, M Ilie, K Hosseini, D Baleanu… - 2022 - earsiv.cankaya.edu.tr
In the current paper, the power series based on the M-fractional derivative is formally
introduced. More peciesely, the Taylor and Maclaurin expansions are generalized for …

Çocukluk çağında pnömoni hastalığının kesirli optimal kontrolü

M Yurtoğlu - 2023 - acikerisim.balikesir.edu.tr
Pnömoni, virüs veya bakteri gibi patojenlerin sebep olduğu bulaşıcı bir akciğer iltihabıdır.
İnsanlık tarihinde en fazla ölüme sebep olan hastalıkların başında gelir. Ayrıca, hastalığa …

Atangana-baleanu türevli lineer adveksiyon-difüzyon denkleminin başlangıç-sınır değer problemleri

A Yetim - 2019 - dspace.balikesir.edu.tr
Kesirli analiz tam sayı mertebeli türev ve integrallerin, keyfi mertebeye genişletilmesi olarak
tanımlanmaktadır. Kesirli operatörler, gerçek hayatta karşılaşılabilen birçok problem için …