A metaheuristic-driven approach to fine-tune deep Boltzmann machines

LA Passos, JP Papa - Applied Soft Computing, 2020 - Elsevier
Deep learning techniques, such as Deep Boltzmann Machines (DBMs), have received
considerable attention over the past years due to the outstanding results concerning a …

Image denoising using attention-residual convolutional neural networks

RG Pires, DFS Santos, CFG Santos… - 2020 33rd SIBGRAPI …, 2020 - ieeexplore.ieee.org
During the image acquisition process, noise is usually added to the data mainly due to
physical limitations of the acquisition sensor, and also regarding imprecisions during the …

A new restricted boltzmann machine training algorithm for image restoration

A Fakhari, K Kiani - Multimedia Tools and Applications, 2021 - Springer
A variety of approaches have been proposed for addressing different image restoration
challenges. Recently, deep generative models were one of the mostly used ones. In this …

Compression by and for deep Boltzmann machines

Q Li, Y Chen, Y Kim - IEEE Transactions on Communications, 2020 - ieeexplore.ieee.org
We answer two questions in this work: what Deep Boltzmann Machines (DBMs) can do for
compression and vise versa. We show that (1) DBMs can be applied to learn the rate …

An image restoration architecture using abstract features and generative models

A Fakhari, K Kiani - Journal of AI and Data Mining, 2021 - jad.shahroodut.ac.ir
Image restoration and its different variations are important topics in low-level image
processing. One of the main challenges in image restoration is dependency of current …

Відновлення зашумлених цифрових зображень

ВВ Гриценко, ІМ Бушин - … /редкол.: ОВ Черевко (голова)[та ін.], 2021 - eprints.cdu.edu.ua
Відновлення різкості зображення зі значними деталями з вхідного зашумленого
зображення, вже давно є активною областю досліджень у сфері комп'ютерного зору. Зі …